We construct counterexamples to inverse problems for the wave operator on domains in $ \mathbb{R}^{n+1} $, $ n \ge 2 $, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On $ \mathbb{R}^{n+1} $ the metrics are conformal to the Minkowski metric.
Citation: |
[1] | S. Alexakis, A. Feizmohammadi and L. Oksanen, Lorentzian Calderón problem under curvature bounds, Preprint arXiv: 2008.07508, 2020. |
[2] | A. L. Besse, Einstein Manifolds, Classics in Mathematics. Springer-Verlag, Berlin, 2008. |
[3] | S. N. Curry and A. R. Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, volume 443 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2018, 86-170. |
[4] | T. Daudé, N. Kamran and F. Nicoleau, A survey of non-uniqueness results for the anisotropic Calder´on problem with disjoint data, In Nonlinear Analysis in Geometry and Applied Mathematics. Part 2, volume 2 of Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., Int. Press, Somerville, MA, 2018, 77-101. |
[5] | T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets, Ann. Inst. Fourier (Grenoble), 69 (2019), 119-170. doi: 10.5802/aif.3240. |
[6] | T. Daudé, N. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887. doi: 10.1007/s00023-018-00755-2. |
[7] | T. Daudé, N. Kamran and F. Nicoleau, The anisotropic Calderón problem for singular metrics of warped product type: The borderline between uniqueness and invisibility, J. Spectr. Theory, 10 (2020), 703-746. doi: 10.4171/JST/310. |
[8] | T. Daudé, N. Kamran and F. Nicoleau, On nonuniqueness for the anisotropic Calderón problem with partial data, Forum Math. Sigma, 8 (2020), Paper No. e7, 17 pp. doi: 10.1017/fms.2020.1. |
[9] | G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737–1758. doi: 10.1080/03605300701382340. |
[10] | A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-693. doi: 10.4310/MRL.2003.v10.n5.a11. |
[11] | L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Classics in Mathematics. Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1. |
[12] | A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, volume 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420036220. |
[13] | C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Analysis and PDE, 6 (2013), 2003-2048. doi: 10.2140/apde.2013.6.2003. |
[14] | Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on {R}iemannian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, (2019), 5087–5126. doi: 10.1093/imrn/rnx263. |
[15] | Y. Kian, Y. Kurylev, M. Lassas and L. Oksanen, Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets, J. Differential Equations, 267 (2019), 2210-2238. doi: 10.1016/j.jde.2019.03.008. |
[16] | M. Lassas and T. Liimatainen, Conformal harmonic coordinates, To appear in Communications in Analysis and Geometry, Preprint arXiv: 1912.08030, 2019. |
[17] | M. Lassas, T. Liimatainen and M. Salo, The Calderón problem for the conformal Laplacian, To appear in Communications in Analysis and Geometry, Preprint arXiv: 1612.07939, 2016. |
[18] | M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19 pp. doi: 10.1088/0266-5611/26/8/085012. |
[19] | M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with Dirichlet data and {N}eumann data on disjoint sets, Duke Mathematical Journal, 163 (2014), 1071-1103. doi: 10.1215/00127094-2649534. |
[20] | M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222. doi: 10.4310/CAG.2003.v11.n2.a2. |
[21] | J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91. doi: 10.1090/S0273-0979-1987-15514-5. |
[22] | W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134. doi: 10.1088/0266-5611/13/1/010. |
[23] | J. B. Pendry, D. Schurig and D. R. Smith, Controlling electromagnetic fields, Science, 312 (2006), 1780-1782. doi: 10.1126/science.1125907. |
[24] | Rakesh, Characterization of transmission data for Webster's horn equation, Inverse Problems, 16 (2000), L9–L24. doi: 10.1088/0266-5611/16/2/102. |
[25] | D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (2006), 977-980. doi: 10.1126/science.1133628. |
[26] | G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279. doi: 10.1007/s13373-014-0051-9. |