[1]
|
S. Arridge, P. Fernsel and A. Hauptmann, Joint reconstruction and low-rank decomposition for dynamic, Available online on GitLab: Inverse Problems - Support Code and Reconstruction Videos, 2021. https://gitlab.informatik.uni-bremen.de/s_p32gf3/joint_reconstruction_lowrank_decomp_dynamicip.
|
[2]
|
D. Böhning and B. G. Lindsay, Monotonicity of quadratic-approximation algorithms, Ann. Inst. Statist. Math., 40 (1988), 641-663.
doi: 10.1007/BF00049423.
|
[3]
|
C. Boutsidis and E. Gallopoulos, SVD based initialization: A head start for nonnegative matrix factorization, Pattern Recognition, 41 (2008), 1350-1362.
doi: 10.1016/j.patcog.2007.09.010.
|
[4]
|
D. Brunet, E. R. Vrscay and Z. Wang, On the mathematical properties of the structural similarity index, IEEE Trans. Image Process., 21 (2012), 1488-1499.
doi: 10.1109/TIP.2011.2173206.
|
[5]
|
T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, In Wavelets and Sparsity XVII, International Society for Optics and Photonics, 10394 (2017), 236–245.
doi: 10.1117/12.2273380.
|
[6]
|
M. Burger, H. Dirks, L. Frerking, A. Hauptmann, T. Helin and S. Siltanen, A variational reconstruction method for undersampled dynamic X-ray tomography based on physical motion models, Inverse Problems, 33 (2017), 24pp.
doi: 10.1088/1361-6420/aa99cf.
|
[7]
|
M. Burger, H. Dirks and C.-B. Schönlieb, A variational model for joint motion estimation and image reconstruction, SIAM J. Imaging Sci., 11 (2018), 94-128.
doi: 10.1137/16M1084183.
|
[8]
|
J. Cai, X. Jia, H. Gao, S. B. Jiang, Z. Shen and H. Zhao, Cine cone beam ct reconstruction using low-rank matrix factorization: Algorithm and a proof-of-principle study, IEEE Transactions on Medical Imaging, 33 (2014), 1581-1591.
doi: 10.1109/TMI.2014.2319055.
|
[9]
|
E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, J. ACM, 58 (2011), 1-37.
doi: 10.1145/1970392.1970395.
|
[10]
|
B. Chen, J. Abascal and M. Soleimani, Extended joint sparsity reconstruction for spatial and temporal ERT imaging, Sensors, 18 (2018), 4014.
doi: 10.3390/s18114014.
|
[11]
|
C. Chen and O. Öktem, Indirect image registration with large diffeomorphic deformations, SIAM J. Imaging Sci., 11 (2018), 575-617.
doi: 10.1137/17M1134627.
|
[12]
|
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi–Way Data Analysis and Blind Source Separation, Wiley Publishing, 2009.
|
[13]
|
C. De Mol, Blind Deconvolution and Nonnegative Matrix Factorization, Oberwolfach Reports 51/2012, Mathematisches Forschungsinstitut Oberwolfach, 2012.
|
[14]
|
M. Defrise, C. Vanhove and X. Liu, An algorithm for total variation regularization in high-dimensional linear problems, Inverse Problems, 27 (2011), 16pp.
doi: 10.1088/0266-5611/27/6/065002.
|
[15]
|
C. Ding, X. He and H. D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, In Proceedings of the 2005 SIAM International Conference on Data Mining, 5 2005,606–610.
doi: 10.1137/1.9781611972757.70.
|
[16]
|
N. Djurabekova, A. Goldberg, A. Hauptmann, D. Hawkes, G. Long, F. Lucka and M. Betcke, Application of proximal alternating linearized minimization (PALM) and inertial PALM to dynamic 3D CT, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 11072 (2019), 30-34.
doi: 10.1117/12.2534827.
|
[17]
|
D. Driggs, J. Tang, J. Liang, M. Davies and C.-B. Schönlieb, Spring: A fast stochastic proximal alternating method for non-smooth non-convex optimization, preprint, arXiv: 2002.12266.
|
[18]
|
L. Feng, R. Grimm, K. T. Block, H. Chandarana, S. Kim, J. Xu, L. Axel, D. K. Sodickson and R. Otazo, Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI, Magnetic Resonance in Medicine, 72 (2014), 707-717.
doi: 10.1002/mrm.24980.
|
[19]
|
P. Fernsel and P. Maass, A survey on surrogate approaches to non-negative matrix factorization, Vietnam J. Math., 46 (2018), 987-1021.
doi: 10.1007/s10013-018-0315-x.
|
[20]
|
C. Févotte, N. Bertin and J.-L. Durrieu, Nonnegative matrix factorization with the itakura-saito-divergence: With application to music analysis, Neural Computation, 21 (2009), 793-830.
|
[21]
|
H. Gao, J. Cai, Z. Shen and H. Zhao, Robust principal component analysis-based four-dimensional computed tomography, Phys. Med. Biol., 56 (2011), 3181-3198.
doi: 10.1088/0031-9155/56/11/002.
|
[22]
|
H. Gao, Y. Zhang, L. Ren and F.-F. Yin, Principal component reconstruction (PCR) for cine CBCT with motion learning from 2d fluoroscopy, Medical Physics, 45 (2018), 167-177.
doi: 10.1002/mp.12671.
|
[23]
|
T. Goldstein and S. Osher, The split Bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[24]
|
G. H. Golub and C. F. Van Loan, Matrix Computations, 4$^nd$ edition, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013.
|
[25]
|
B. Gris, C. Chen and O. Öktem, Image reconstruction through metamorphosis, Inverse Problems, 36 (2020), 27pp.
doi: 10.1088/1361-6420/ab5832.
|
[26]
|
J. Hakkarainen, Z. Purisha, A. Solonen and S. Siltanen, Undersampled dynamic X-ray tomography with dimension reduction Kalman filter, IEEE Transactions on Computational Imaging, 5 (2019), 492-501.
doi: 10.1109/TCI.2019.2896527.
|
[27]
|
A. Hauptmann, O. Öktem and C. Schönlieb, Image reconstruction in dynamic inverse problems with temporal models, preprint, arXiv: 2007.10238.
|
[28]
|
K. S. Kim and J. C. Ye, Low-dose limited view 4d ct reconstruction using patch-based low-rank regularization, In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), (2013), 1–4.
doi: 10.1109/NSSMIC.2013.6829178.
|
[29]
|
B. Klingenberg, J. Curry and A. Dougherty, Non-negative matrix factorization: Ill-posedness and a geometric algorithm, Pattern Recognition, 42 (2009), 918-928.
doi: 10.1016/j.patcog.2008.08.026.
|
[30]
|
D. Kressner and A. Uschmajew, On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems, Linear Algebra Appl., 493 (2016), 556-572.
doi: 10.1016/j.laa.2015.12.016.
|
[31]
|
K. Lange, Optimization, Springer Texts in Statistics, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4182-7.
|
[32]
|
K. Lange, D. R. Hunter and I. Yang, Optimization transfer using surrogate objective functions, J. Comput. Graph. Statist., 9 (2000), 1-59.
doi: 10.2307/1390605.
|
[33]
|
L. Lecharlier and C. De Mol, Regularized blind deconvolution with poisson data, Journal of Physics: Conference Series, 464 (2013), 012003.
doi: 10.1088/1742-6596/464/1/012003.
|
[34]
|
D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788-791.
doi: 10.1038/44565.
|
[35]
|
D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, In Advances in Neural Information Processing Systems 13 - NIPS 2000, (2001), 535–541.
|
[36]
|
J. Leuschner, M. Schmidt, P. Fernsel, D. Lachmund, T. Boskamp and P. Maass, Supervised non-negative matrix factorization methods for maldi imaging applications, Bioinformatics, 35 (2019), 1940-1947.
doi: 10.1093/bioinformatics/bty909.
|
[37]
|
S. G. Lingala, Y. Hu, E. V. R. DiBella and M. Jacob, Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR, IEEE Transactions on Medical Imaging, 30 (2011), 1042-1054.
doi: 10.1109/TMI.2010.2100850.
|
[38]
|
F. Lucka, N. Huynh, M. Betcke, E. Zhang, P. Beard, B. Cox and S. Arridge, Enhancing compressed sensing 4D photoacoustic tomography by simultaneous motion estimation, SIAM J. Imaging Sci., 11 (2018), 2224-2253.
doi: 10.1137/18M1170066.
|
[39]
|
M. Lustig, J. M. Santos, D. L. Donoho and J. M. Pauly, kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity, In Proceedings of the 13th annual meeting of ISMRM, Seattle, 2420 (2006).
|
[40]
|
E. Niemi, M. Lassas, A. Kallonen, L. Harhanen, K. Hämäläinen and S. Siltanen, Dynamic multi-source X-ray tomography using a spacetime level set method, J. Comput. Phys., 291 (2015), 218-237.
doi: 10.1016/j.jcp.2015.03.016.
|
[41]
|
J. P. Oliveira, J. M. Bioucas-Dias and M. A. T. Figueiredo, Review: Adaptive total variation image deblurring: A majorization-minimization approach, Signal Processing, 89 (2009), 1683-1693.
doi: 10.1016/j.sigpro.2009.03.018.
|
[42]
|
P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), 111-126.
doi: 10.1002/env.3170050203.
|
[43]
|
K. Pearson, On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (1901), 559-572.
doi: 10.1080/14786440109462720.
|
[44]
|
U. Schmitt and A. K. Louis, Efficient algorithms for the regularization of dynamic inverse problems: Ⅰ. Theory, Inverse Problems, 18 (2002), 645-658.
doi: 10.1088/0266-5611/18/3/308.
|
[45]
|
U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems: Ⅱ. Applications, Inverse Problems, 18 (2002), 659-676.
doi: 10.1088/0266-5611/18/3/309.
|
[46]
|
J. A. Steeden, G. T. Kowalik, O. Tann, M. Hughes, K. H. Mortensen and V. Muthurangu, Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing, Journal of Cardiovascular Magnetic Resonance, 20 (2018), 79.
doi: 10.1186/s12968-018-0500-9.
|
[47]
|
M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.
doi: 10.1137/100781894.
|
[48]
|
B. R. Trémoulhéac, Low-rank and Sparse Reconstruction in Dynamic Magnetic Resonance Imaging Via Proximal Splitting Methods, PhD thesis, University College London, 2014.
|
[49]
|
B. R. Trémoulhéac, N. Dikaios, D. Atkinson and S. Arridge, Dynamic MR image reconstruction-separation from undersampled (k, t)-space via low-rank plus sparse prior, IEEE Transactions on Medical Imaging, 33 (2014), 1689-1701.
doi: 10.1109/TMI.2014.2321190.
|
[50]
|
A. Uschmajew, On Low-Rank Approximation in Tensor Product Hilbert Spaces, PhD thesis, Technische Universität Berlin, 2013.
|
[51]
|
S. Wundrak, J. Paul, J. Ulrici, E. Hell and V. Rasche, A small surrogate for the golden angle in time-resolved radial MRI based on generalized Fibonacci sequences, IEEE Transactions on Medical Imaging, 34 (2014), 1262-1269.
doi: 10.1109/TMI.2014.2382572.
|
[52]
|
X. Yu, S. Chen, Z. Hu, M. Liu, Y. Chen, P. Shi and H. Liu, Sparse/low rank constrained reconstruction for dynamic pet imaging, PLOS ONE, 10 (2015), 1-18.
doi: 10.1371/journal.pone.0142019.
|
[53]
|
X. M. Yuan and J. F. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, Pac. J. Optim., 9 (2013), 167-180.
|