
-
Previous Article
A variational saturation-value model for image decomposition: Illumination and reflectance
- IPI Home
- This Issue
-
Next Article
Joint reconstruction and low-rank decomposition for dynamic inverse problems
Generative imaging and image processing via generative encoder
1. | National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, Singapore 119077 |
2. | Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA |
$ G $ |
$ E $ |
$ G $ |
$ x = \mathcal{P}(x^*) $ |
$ x^* $ |
$ \mathcal{P} $ |
$ x $ |
$ m = E(x) $ |
$ z^* = \underset{z}{\mathrm{argmin}} \|E(G(z))-m\|_2^2+\lambda\|z\|_2^2 $ |
$ x^* $ |
$ \hat{x}: = G(z^*)\approx x^* $ |
$ \lambda>0 $ |
References:
[1] |
M. Aharon, M. Elad and A. Bruckstein,
K-svd: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006), 4311-4322.
|
[2] |
M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, In Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, 70 (2017), 214–223, http://proceedings.mlr.press/v70/arjovsky17a.html. |
[3] |
D. Bau, J.-Y. Zhu, J. Wulff, W. Peebles, H. Strobelt, B. Zhou and A. Torralba, Seeing what a GAN cannot generate, arXiv: 1910.11626
doi: 10.1109/ICCV.2019.00460. |
[4] |
D. Berthelot, T. Schumm and L. Metz, BEGAN: Boundary equilibrium generative adversarial networks, Computer Science, http://arXiv.org/abs/1703.10717. |
[5] |
A. Bora, A. Jalal, E. Price and A. G. Dimakis,
Compressed sensing using generative models, ICML'17 Proceedings of the 34th International Conference on Machine Learning, 70 (2017), 537-546.
|
[6] |
C. Bowles, L. J. Chen, R. Guerrero, P. Bentley, R. N. Gunn, A. Hammers, D. A. Dickie, M. del C. Valdés Hernández, J. M. Wardlaw and D. Rueckert, Gan augmentation: Augmenting training data using generative adversarial networks, arXiv: 1810.10863. |
[7] |
A. Buades, B. Coll and J. .Morel,
A non-local algorithm for image denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2 (2005), 60-65.
|
[8] |
E. J. Candes, J. Romberg and T. Tao,
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083. |
[9] |
J. Chen, J. Chen, H. Chao and M. Yang, Image blind denoising with generative adversarial network based noise modeling, In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
doi: 10.1109/CVPR.2018.00333. |
[10] |
T. Chen, X. Zhai, M. Ritter, M. Lucic and N. Houlsby, Self-supervised gans via auxiliary rotation loss, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 12146–12155.
doi: 10.1109/CVPR.2019.01243. |
[11] |
A. Creswell and A. A. Bharath, Inverting the generator of A generative adversarial network, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), http://arXiv.org/abs/1611.05644.
doi: 10.1109/TNNLS.2018.2875194. |
[12] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Bm3d image denoising with shape-adaptive principal component analysis, Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS'09). |
[13] |
D. Ulyanov, A. Vedaldi and V. Lempitsky, Deep image prior, arXiv: 1711.10925. |
[14] |
J. Donahue, P. Krähenbühl and T. Darrell, Adversarial feature learning, Computer Science, http://arXiv.org/abs/1605.09782. |
[15] |
W. Dong, L. Zhang, G. Shi and X. Wu,
Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Trans. Image Process., 20 (2011), 1838-1857.
doi: 10.1109/TIP.2011.2108306. |
[16] |
D. L. Donoho,
Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[17] |
V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro and A. C. Courville, Adversarially learned inference, arXiv: 1606.00704. |
[18] |
P. Getreuer,
Total variation inpainting using split bregman, Image Processing On Line, 2 (2012), 147-157.
|
[19] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets, Advances in Neural Information Processing Systems, 27 (NIPS 2014). |
[20] |
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer and S. Hochreiter, Gans trained by a two time-scale update rule converge to a nash equilibrium, Computer Science, http://arXiv.org/abs/1706.08500. |
[21] |
S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu and S.-H. Lai, Auggan: Cross domain adaptation with gan-based data augmentation, In Computer Vision – ECCV 2018, (eds. V. Ferrari, M. Hebert, C. Sminchisescu and Y. Weiss), Springer International Publishing, Cham, (2018), 731–744. |
[22] |
T. Karras, T. Aila, S. Laine and J. Lehtinen, Progressive growing of gans for improved quality, stability, and variation, Computer Science, http://arXiv.org/abs/1710.10196. |
[23] |
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, Published as A Conference Paper at the 3rd International Conference for Learning Representations, San Diego, 2015, 2014, http://arXiv.org/abs/1412.6980. |
[24] |
D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013. |
[25] |
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin and J. Matas, Deblurgan: Blind motion deblurring using conditional adversarial networks, In IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 8183–8192. |
[26] |
A. B. L. Larsen, S. K. Sønderby and O. Winther, Autoencoding beyond pixels using a learned similarity metric, Computer Science, http://arXiv.org/abs/1512.09300. |
[27] |
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang and W. Shi, Photo-realistic single image super-resolution using a generative adversarial network, (2017), 105–114. |
[28] |
Q. Lei, A. Jalal, I. S. Dhillon and A. G. Dimakis, Inverting deep generative models, one layer at a time, Computer Science, 2019, http://arXiv.org/abs/1906.07437. |
[29] |
X. Liang, H. Zhang and E. P. Xing, Generative semantic manipulation with mask-contrasting GAN, Lecture Notes in Computer Science, 11217 (2018), 574–590, http://arXiv.org/abs/1708.00315.
doi: 10.1007/978-3-030-01261-8_34. |
[30] |
Z. C. Lipton and S. Tripathi, Precise recovery of latent vectors from generative adversarial networks, Computer Science, http://arXiv.org/abs/1702.04782. |
[31] |
Z. Liu, P. Luo, X. Wang and X. Tang, Deep learning face attributes in the wild, In IEEE International Conference on Computer Vision (ICCV), 2015.
doi: 10.1109/ICCV.2015.425. |
[32] |
S. Menon, A. Damian, S. Hu, N. Ravi and C. Rudin, Pulse: Self-supervised photo upsampling via latent space exploration of generative models, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2002), 2434–2442. |
[33] |
A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy and J. Clune, Plug & play generative networks: Conditional iterative generation of images in latent space, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, http://arXiv.org/abs/1612.00005.
doi: 10.1109/CVPR.2017.374. |
[34] |
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell and A. Efros, Context encoders: Feature learning by inpainting, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
doi: 10.1109/CVPR.2016.278. |
[35] |
A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016. |
[36] |
T. Ramstad, Bentheimer micro-ct with waterflood, 2018, http://www.digitalrocksportal.org/projects/172. |
[37] |
M. Rosca, B. Lakshminarayanan, D. Warde-Farley and S. Mohamed, Variational approaches for auto-encoding generative adversarial networks, arXiv: 1706.04987. |
[38] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[39] |
J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert,
A deep cascade of convolutional neural networks for mr image reconstruction, Information Processing in Medical Imaging, 10265 (2017), 647-658.
doi: 10.1007/978-3-319-59050-9_51. |
[40] |
V. Shah and C. Hegde, Solving linear inverse problems using gan priors: An algorithm with provable guarantees, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2018), 4609–4613.
doi: 10.1109/ICASSP.2018.8462233. |
[41] |
Y. Shen, J. Gu, X. Tang and B. Zhou, Interpreting the latent space of gans for semantic face editing, Computer Science, http://arXiv.org/abs/1907.10786. |
[42] |
D. Ulyanov, A. Vedaldi and V. S. Lempitsky, Adversarial generator-encoder networks, Computer Science, http://arXiv.org/abs/1704.02304. |
[43] |
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res., 11 (2010), 3371–3408, http://dl.acm.org/citation.cfm?id=1756006.1953039. |
[44] |
P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, In ICML '08, (2008), 1096–1103.
doi: 10.1145/1390156.1390294. |
[45] |
Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli,
Image quality assessment: From error visibility to structural similarity, Image Processing, IEEE Transactions on, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861. |
[46] |
D. Warde-Farley and Y. Bengio, Improving generative adversarial networks with denoising feature matching, In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings, 2017, https://openreview.net/forum?id=S1X7nhsxl. |
[47] |
L. Xu and J. Jia,
Two-phase kernel estimation for robust motion deblurring, Lecture Notes in Computer Science, 6311 (2010), 157-170.
doi: 10.1007/978-3-642-15549-9_12. |
[48] |
Q. Yan and W. Wang, DCGANsfor image super-resolution, denoising and debluring., |
[49] |
R. Yan and L. Shao,
Blind image blur estimation via deep learning, IEEE Trans Image Process, 25 (2016), 1910-1921.
|
[50] |
R. A. Yeh, C. Chen, T. Lim, A. G. Schwing, M. Hasegawa-Johnson and M. N. Do, Semantic image inpainting with deep generative models, In IEEE Conference on Computer Vision and Pattern Recognition, (CVPR 2017), Honolulu, HI, USA,, (2017), 6882–6890
doi: 10.1109/CVPR.2017.728. |
[51] |
F. Yu, Y. Zhang, S. Song, A. Seff, T. Funkhouser and J. Xiao, LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop, Computer Science, http://arXiv.org/abs/1506.03365. |
[52] |
J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu and T. S. Huang, Generative image inpainting with contextual attention, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
doi: 10.1109/CVPR.2018.00577. |
[53] |
H. Zhang, Z. Zhang, A. Odena and H. Lee, Consistency regularization for generative adversarial networks, arXiv: 1910.12027. |
[54] |
J. Zhang, D. Zhao and W. Gao,
Group-based sparse representation for image restoration, IEEE Trans. Image Process., 23 (2014), 3336-3351.
doi: 10.1109/TIP.2014.2323127. |
[55] |
J. J. Zhao, M. Mathieu and Y. LeCun, Energy-based generative adversarial networks, In ICLR, 2017. |
show all references
References:
[1] |
M. Aharon, M. Elad and A. Bruckstein,
K-svd: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006), 4311-4322.
|
[2] |
M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, In Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, 70 (2017), 214–223, http://proceedings.mlr.press/v70/arjovsky17a.html. |
[3] |
D. Bau, J.-Y. Zhu, J. Wulff, W. Peebles, H. Strobelt, B. Zhou and A. Torralba, Seeing what a GAN cannot generate, arXiv: 1910.11626
doi: 10.1109/ICCV.2019.00460. |
[4] |
D. Berthelot, T. Schumm and L. Metz, BEGAN: Boundary equilibrium generative adversarial networks, Computer Science, http://arXiv.org/abs/1703.10717. |
[5] |
A. Bora, A. Jalal, E. Price and A. G. Dimakis,
Compressed sensing using generative models, ICML'17 Proceedings of the 34th International Conference on Machine Learning, 70 (2017), 537-546.
|
[6] |
C. Bowles, L. J. Chen, R. Guerrero, P. Bentley, R. N. Gunn, A. Hammers, D. A. Dickie, M. del C. Valdés Hernández, J. M. Wardlaw and D. Rueckert, Gan augmentation: Augmenting training data using generative adversarial networks, arXiv: 1810.10863. |
[7] |
A. Buades, B. Coll and J. .Morel,
A non-local algorithm for image denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2 (2005), 60-65.
|
[8] |
E. J. Candes, J. Romberg and T. Tao,
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083. |
[9] |
J. Chen, J. Chen, H. Chao and M. Yang, Image blind denoising with generative adversarial network based noise modeling, In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
doi: 10.1109/CVPR.2018.00333. |
[10] |
T. Chen, X. Zhai, M. Ritter, M. Lucic and N. Houlsby, Self-supervised gans via auxiliary rotation loss, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 12146–12155.
doi: 10.1109/CVPR.2019.01243. |
[11] |
A. Creswell and A. A. Bharath, Inverting the generator of A generative adversarial network, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), http://arXiv.org/abs/1611.05644.
doi: 10.1109/TNNLS.2018.2875194. |
[12] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Bm3d image denoising with shape-adaptive principal component analysis, Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS'09). |
[13] |
D. Ulyanov, A. Vedaldi and V. Lempitsky, Deep image prior, arXiv: 1711.10925. |
[14] |
J. Donahue, P. Krähenbühl and T. Darrell, Adversarial feature learning, Computer Science, http://arXiv.org/abs/1605.09782. |
[15] |
W. Dong, L. Zhang, G. Shi and X. Wu,
Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Trans. Image Process., 20 (2011), 1838-1857.
doi: 10.1109/TIP.2011.2108306. |
[16] |
D. L. Donoho,
Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582. |
[17] |
V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro and A. C. Courville, Adversarially learned inference, arXiv: 1606.00704. |
[18] |
P. Getreuer,
Total variation inpainting using split bregman, Image Processing On Line, 2 (2012), 147-157.
|
[19] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets, Advances in Neural Information Processing Systems, 27 (NIPS 2014). |
[20] |
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer and S. Hochreiter, Gans trained by a two time-scale update rule converge to a nash equilibrium, Computer Science, http://arXiv.org/abs/1706.08500. |
[21] |
S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu and S.-H. Lai, Auggan: Cross domain adaptation with gan-based data augmentation, In Computer Vision – ECCV 2018, (eds. V. Ferrari, M. Hebert, C. Sminchisescu and Y. Weiss), Springer International Publishing, Cham, (2018), 731–744. |
[22] |
T. Karras, T. Aila, S. Laine and J. Lehtinen, Progressive growing of gans for improved quality, stability, and variation, Computer Science, http://arXiv.org/abs/1710.10196. |
[23] |
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, Published as A Conference Paper at the 3rd International Conference for Learning Representations, San Diego, 2015, 2014, http://arXiv.org/abs/1412.6980. |
[24] |
D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013. |
[25] |
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin and J. Matas, Deblurgan: Blind motion deblurring using conditional adversarial networks, In IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 8183–8192. |
[26] |
A. B. L. Larsen, S. K. Sønderby and O. Winther, Autoencoding beyond pixels using a learned similarity metric, Computer Science, http://arXiv.org/abs/1512.09300. |
[27] |
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang and W. Shi, Photo-realistic single image super-resolution using a generative adversarial network, (2017), 105–114. |
[28] |
Q. Lei, A. Jalal, I. S. Dhillon and A. G. Dimakis, Inverting deep generative models, one layer at a time, Computer Science, 2019, http://arXiv.org/abs/1906.07437. |
[29] |
X. Liang, H. Zhang and E. P. Xing, Generative semantic manipulation with mask-contrasting GAN, Lecture Notes in Computer Science, 11217 (2018), 574–590, http://arXiv.org/abs/1708.00315.
doi: 10.1007/978-3-030-01261-8_34. |
[30] |
Z. C. Lipton and S. Tripathi, Precise recovery of latent vectors from generative adversarial networks, Computer Science, http://arXiv.org/abs/1702.04782. |
[31] |
Z. Liu, P. Luo, X. Wang and X. Tang, Deep learning face attributes in the wild, In IEEE International Conference on Computer Vision (ICCV), 2015.
doi: 10.1109/ICCV.2015.425. |
[32] |
S. Menon, A. Damian, S. Hu, N. Ravi and C. Rudin, Pulse: Self-supervised photo upsampling via latent space exploration of generative models, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2002), 2434–2442. |
[33] |
A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy and J. Clune, Plug & play generative networks: Conditional iterative generation of images in latent space, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, http://arXiv.org/abs/1612.00005.
doi: 10.1109/CVPR.2017.374. |
[34] |
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell and A. Efros, Context encoders: Feature learning by inpainting, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
doi: 10.1109/CVPR.2016.278. |
[35] |
A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, In ICLR, 2016. |
[36] |
T. Ramstad, Bentheimer micro-ct with waterflood, 2018, http://www.digitalrocksportal.org/projects/172. |
[37] |
M. Rosca, B. Lakshminarayanan, D. Warde-Farley and S. Mohamed, Variational approaches for auto-encoding generative adversarial networks, arXiv: 1706.04987. |
[38] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[39] |
J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert,
A deep cascade of convolutional neural networks for mr image reconstruction, Information Processing in Medical Imaging, 10265 (2017), 647-658.
doi: 10.1007/978-3-319-59050-9_51. |
[40] |
V. Shah and C. Hegde, Solving linear inverse problems using gan priors: An algorithm with provable guarantees, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2018), 4609–4613.
doi: 10.1109/ICASSP.2018.8462233. |
[41] |
Y. Shen, J. Gu, X. Tang and B. Zhou, Interpreting the latent space of gans for semantic face editing, Computer Science, http://arXiv.org/abs/1907.10786. |
[42] |
D. Ulyanov, A. Vedaldi and V. S. Lempitsky, Adversarial generator-encoder networks, Computer Science, http://arXiv.org/abs/1704.02304. |
[43] |
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res., 11 (2010), 3371–3408, http://dl.acm.org/citation.cfm?id=1756006.1953039. |
[44] |
P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, In ICML '08, (2008), 1096–1103.
doi: 10.1145/1390156.1390294. |
[45] |
Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli,
Image quality assessment: From error visibility to structural similarity, Image Processing, IEEE Transactions on, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861. |
[46] |
D. Warde-Farley and Y. Bengio, Improving generative adversarial networks with denoising feature matching, In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings, 2017, https://openreview.net/forum?id=S1X7nhsxl. |
[47] |
L. Xu and J. Jia,
Two-phase kernel estimation for robust motion deblurring, Lecture Notes in Computer Science, 6311 (2010), 157-170.
doi: 10.1007/978-3-642-15549-9_12. |
[48] |
Q. Yan and W. Wang, DCGANsfor image super-resolution, denoising and debluring., |
[49] |
R. Yan and L. Shao,
Blind image blur estimation via deep learning, IEEE Trans Image Process, 25 (2016), 1910-1921.
|
[50] |
R. A. Yeh, C. Chen, T. Lim, A. G. Schwing, M. Hasegawa-Johnson and M. N. Do, Semantic image inpainting with deep generative models, In IEEE Conference on Computer Vision and Pattern Recognition, (CVPR 2017), Honolulu, HI, USA,, (2017), 6882–6890
doi: 10.1109/CVPR.2017.728. |
[51] |
F. Yu, Y. Zhang, S. Song, A. Seff, T. Funkhouser and J. Xiao, LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop, Computer Science, http://arXiv.org/abs/1506.03365. |
[52] |
J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu and T. S. Huang, Generative image inpainting with contextual attention, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
doi: 10.1109/CVPR.2018.00577. |
[53] |
H. Zhang, Z. Zhang, A. Odena and H. Lee, Consistency regularization for generative adversarial networks, arXiv: 1910.12027. |
[54] |
J. Zhang, D. Zhao and W. Gao,
Group-based sparse representation for image restoration, IEEE Trans. Image Process., 23 (2014), 3336-3351.
doi: 10.1109/TIP.2014.2323127. |
[55] |
J. J. Zhao, M. Mathieu and Y. LeCun, Energy-based generative adversarial networks, In ICLR, 2017. |














layer type | layer |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
fullyconnected |
layer type | layer |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
conv2d | |
maxpool2d | |
fullyconnected |
Model | MSE | SSIM | FID |
CRGAN* | 16.97 | ||
SSGAN* | 24.36 | ||
Our pGAN | 22.13 | ||
ConvAE | 0.03386 | 0.6823 |
87.71 |
AEGAN | 0.03317 | 0.6907 |
34.53 |
invertGAN | 0.03529 | 0.7203 |
19.19 |
GE | 0.03262 | 0.7329 |
17.42 |
Model | MSE | SSIM | FID |
CRGAN* | 16.97 | ||
SSGAN* | 24.36 | ||
Our pGAN | 22.13 | ||
ConvAE | 0.03386 | 0.6823 |
87.71 |
AEGAN | 0.03317 | 0.6907 |
34.53 |
invertGAN | 0.03529 | 0.7203 |
19.19 |
GE | 0.03262 | 0.7329 |
17.42 |
Model | MSE | PSNR |
ConvAE | 0.009271 | 20.32 |
invertGAN (512) | 0.008185 | 20.86 |
GE (512) | 0.007470 | 21.26 |
GE (256) | 0.007741 | 21.11 |
GE (128) | 0.007839 | 21.05 |
GE (64) | 0.008499 | 20.70 |
Model | MSE | PSNR |
ConvAE | 0.009271 | 20.32 |
invertGAN (512) | 0.008185 | 20.86 |
GE (512) | 0.007470 | 21.26 |
GE (256) | 0.007741 | 21.11 |
GE (128) | 0.007839 | 21.05 |
GE (64) | 0.008499 | 20.70 |
InvertGAN, F | InvertGAN, T | |
GE, F | 289 | 32 |
GE, T | 157 | 469 |
InvertGAN, F | InvertGAN, T | |
GE, F | 289 | 32 |
GE, T | 157 | 469 |
[1] |
Susu Zhang, Jiancheng Ni, Lijun Hou, Zili Zhou, Jie Hou, Feng Gao. Global-Affine and Local-Specific Generative Adversarial Network for semantic-guided image generation. Mathematical Foundations of Computing, 2021, 4 (3) : 145-165. doi: 10.3934/mfc.2021009 |
[2] |
Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning. Inverse Problems and Imaging, 2021, 15 (6) : 1347-1362. doi: 10.3934/ipi.2021017 |
[3] |
Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188 |
[4] |
Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems and Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199 |
[5] |
Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015 |
[6] |
Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems and Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853 |
[7] |
Jie Huang, Marco Donatelli, Raymond H. Chan. Nonstationary iterated thresholding algorithms for image deblurring. Inverse Problems and Imaging, 2013, 7 (3) : 717-736. doi: 10.3934/ipi.2013.7.717 |
[8] |
Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems and Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499 |
[9] |
Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems and Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195 |
[10] |
Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems and Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019 |
[11] |
Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems and Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022 |
[12] |
Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems and Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591 |
[13] |
Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial and Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037 |
[14] |
Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062 |
[15] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[16] |
Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems and Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058 |
[17] |
Marko Filipović, Ivica Kopriva. A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Problems and Imaging, 2011, 5 (4) : 815-841. doi: 10.3934/ipi.2011.5.815 |
[18] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[19] |
Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems and Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038 |
[20] |
Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations and Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084 |
2020 Impact Factor: 1.639
Tools
Article outline
Figures and Tables
[Back to Top]