We study the well-posedness of a semi-linear fractional diffusion equation and formulate an associated inverse problem. We determine fractional power type nonlinearities from the exterior partial measurements of the Dirichlet-to-Neumann map. Our arguments are based on a first order linearization as well as the parabolic Runge approximation property.
Citation: |
[1] |
B. Barrios, I. Peral, F. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650.
doi: 10.1007/s00205-014-0733-1.![]() ![]() ![]() |
[2] |
S. Bhattacharyya, T. Ghosh and G. Uhlmann, Inverse problems for the fractional-Laplacian with lower order non-local perturbations, Trans. Amer. Math. Soc., 374 (2021), 3053-3075.
doi: 10.1090/tran/8151.![]() ![]() ![]() |
[3] |
M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), 46pp.
doi: 10.1007/s00526-020-01740-6.![]() ![]() ![]() |
[4] |
G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 24pp.
doi: 10.1088/1361-6420/ab661a.![]() ![]() ![]() |
[5] |
G. Covi, K. Mönkkönen and J. Railo, Unique continuation property and Poincaré inequality for higher order fractional laplacians with applications in inverse problems, Inverse Probl. Imaging, 15 (2021), 641-681.
doi: 10.3934/ipi.2021009.![]() ![]() ![]() |
[6] |
G. Covi, K. Mönkkönen, J. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: Uniqueness, preprint, arXiv2008.10227.
![]() |
[7] |
S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal., 29 (2019), 1428-1455.
doi: 10.1007/s12220-018-0045-z.![]() ![]() ![]() |
[8] |
M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Comm. Partial Differential Equations, 38 (2013), 1539-1573.
doi: 10.1080/03605302.2013.808211.![]() ![]() ![]() |
[9] |
X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas ${{F}^{\cdot \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}}}s$. Nat. Ser. A Mat. RACSAM, 110 (2016), 49-64.
doi: 10.1007/s13398-015-0218-6.![]() ![]() ![]() |
[10] |
T. Ghosh, Y.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923-1961.
doi: 10.1080/03605302.2017.1390681.![]() ![]() ![]() |
[11] |
T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 42pp.
doi: 10.1016/j.jfa.2020.108505.![]() ![]() ![]() |
[12] |
T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.
doi: 10.2140/apde.2020.13.455.![]() ![]() ![]() |
[13] |
A. Greco and A. Iannizzotto, Existence and convexity of solutions of the fractional heat equation, Commun. Pure Appl. Anal., 16 (2017), 2201-2226.
doi: 10.3934/cpaa.2017109.![]() ![]() ![]() |
[14] |
Y. Kian and G. Uhlmann, Recovery of nonlinear terms for reaction diffusion equations from boundary measurements, preprint, arXiv2011.06039.
![]() |
[15] |
K. Krupchyk and G. Uhlmann, A remark on partial data inverse problems for semilinear elliptic equations, Proc. Amer. Math. Soc., 148 (2020), 681-685.
doi: 10.1090/proc/14844.![]() ![]() ![]() |
[16] |
Y. Kurylev, M. Lassas and G. Uhlmann, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math., 212 (2018), 781-857.
doi: 10.1007/s00222-017-0780-y.![]() ![]() ![]() |
[17] |
R.-Y. Lai and Y.-H. Lin, Inverse problems for fractional semilinear elliptic equations, preprint, arXiv{2004.00549}.
![]() |
[18] |
R.-Y. Lai, Y.-H. Lin and A. Rüland, The Calderón problem for a space-time fractional parabolic equation, SIAM J. Math. Anal., 52 (2020), 2655-2688.
doi: 10.1137/19M1270288.![]() ![]() ![]() |
[19] |
R.-Y. Lai and T. Zhou, An inverse problem for non-linear fractional magnetic schrodinger equation, preprint, arXiv2103.08180.
![]() |
[20] |
M. Lassas, T. Liimatainen, Y.-H. Lin and M. Salo, Inverse problems for elliptic equations with power type nonlinearities, J. Math. Pures Appl., 145 (2021), 44-82.
doi: 10.1016/j.matpur.2020.11.006.![]() ![]() ![]() |
[21] |
L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, Comm. Partial Differential Equations, 46 (2021), 1017-1026.
doi: 10.1080/03605302.2020.1857406.![]() ![]() ![]() |
[22] |
L. Li, A fractional parabolic inverse problem involving a time-dependent magnetic potential, SIAM J. Math. Anal., 53 (2021), 435-452.
doi: 10.1137/20M1359638.![]() ![]() ![]() |
[23] |
L. Li, On an inverse problem for a fractional semilinear elliptic equation involving a magnetic potential, J. Differential Equations, 296 (2021), 170-185.
doi: 10.1016/j.jde.2021.06.003.![]() ![]() ![]() |
[24] |
T. Liimatainen, Y.-H. Lin, M. Salo and T. Tyni, Inverse problems for elliptic equations with fractional power type nonlinearities, preprint, arXiv2012.04944.
![]() |
[25] |
C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461-484.
doi: 10.1016/j.na.2006.11.011.![]() ![]() ![]() |
[26] |
A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), 56pp.
doi: 10.1016/j.na.2019.05.010.![]() ![]() ![]() |
[27] |
A. Rüland and M. Salo, Quantitative approximation properties for the fractional heat equation, Math. Control Relat. Fields, 10 (2020), 1-26.
doi: 10.3934/mcrf.2019027.![]() ![]() ![]() |
[28] |
L. Silvestre, Hölder estimates for advection fractional-diffusion equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 843-855.
![]() ![]() |
[29] |
Z. Sun and G. Uhlmann, Inverse problems in quasilinear anisotropic media, Amer. J. Math., 119 (1997), 771-797.
doi: 10.1353/ajm.1997.0027.![]() ![]() ![]() |
[30] |
M. Taylor, Partial Differential Equations III: Nonlinear Equations, 2$^{nd}$ edition, Applied Mathematical Sciences, 117. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7049-7.![]() ![]() ![]() |
[31] |
J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.
doi: 10.3934/dcdss.2014.7.857.![]() ![]() ![]() |