• Previous Article
    Automated filtering in the nonlinear Fourier domain of systematic artifacts in 2D electrical impedance tomography
  • IPI Home
  • This Issue
  • Next Article
    An inverse problem for a fractional diffusion equation with fractional power type nonlinearities
June  2022, 16(3): 625-646. doi: 10.3934/ipi.2021065

Nonconvex regularization for blurred images with Cauchy noise

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

2. 

LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

3. 

Department of Mathematics, The Chinese University of Hong Kong, Hong Kong 999077

* Corresponding author: Guoxi Ni (nijiusuo09@163.com)

Received  January 2021 Revised  August 2021 Published  June 2022 Early access  October 2021

In this paper, we propose a nonconvex regularization model for images damaged by Cauchy noise and blur. This model is based on the method of the total variational proposed by Federica, Dong and Zeng [SIAM J. Imaging Sci.(2015)], where a variational approach for restoring blurred images with Cauchy noise is used. Here we consider the nonconvex regularization, namely a weighted difference of $ l_1 $-norm and $ l_2 $-norm coupled with wavelet frame, the alternating direction method of multiplier is carried out for this minimization problem, we describe the details of the algorithm and prove its convergence. Numerical experiments are tested by adding different levels of noise and blur, results show that our method can denoise and deblur the image better.

Citation: Xiao Ai, Guoxi Ni, Tieyong Zeng. Nonconvex regularization for blurred images with Cauchy noise. Inverse Problems and Imaging, 2022, 16 (3) : 625-646. doi: 10.3934/ipi.2021065
References:
[1]

A. Achim and E. Kuruoglu, Image denoising using bivariate -stable distributions in the complex wavelet domain, IEEE Signal Process Letters, 12 (2005), 17-20.  doi: 10.1109/LSP.2004.839692.

[2]

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[3]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2$^nd$ edition, Appl. Math. Sci., 147. Springer, New York, 2006.

[4] A. Bovik, Handbook of Image and Video Processing, Academic Press, New York, 2000. 
[5]

S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122.  doi: 10.1561/9781601984616.

[6]

J. F. CaiR. ChanL. Shen and Z. Shen, Convergence analysis of tight framelet approach for missing data recovery, Adv. Comput. Math., 31 (2009), 87-113.  doi: 10.1007/s10444-008-9084-5.

[7]

J. F. CaiR. Chan and Z. Shen, Simultaneous cartoon and texture inpainting, Inverse Probl. Imaging, 4 (2010), 379-395.  doi: 10.3934/ipi.2010.4.379.

[8]

M. C. Cai and X. Q. Jin, BCCB preconditioners for solving linear systems from delay differential equations, Comput. Math. Appl., 50 (2005), 281-288.  doi: 10.1016/j.camwa.2004.03.019.

[9]

A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. 

[10]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.

[11]

R. ChanY. Dong and M. Hintermuller, An effcient two-phase $L_1$-TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), 1731-1739.  doi: 10.1109/TIP.2010.2045148.

[12]

T. F. ChanG. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.  doi: 10.1137/S1064827596299767.

[13]

R. ChanH. Yang and T. Zeng, A two-stage image segmentation method for blurry images with Poisson or multiplicative gamma noise, SIAM J. Imaging Sci., 7 (2014), 98-127.  doi: 10.1137/130920241.

[14]

R. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427-482.  doi: 10.1137/S0036144594276474.

[15]

R. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers. Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. doi: 10.1137/1.9780898718850.

[16]

Y. ChangS. KadabaP. Doerschuk and S. Gelfand, Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65-66. 

[17]

L. Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl., 158 (2013), 460-479.  doi: 10.1007/s10957-012-0245-9.

[18]

I. DaubechiesG. Teschke and L. Vese, Iteratively solving linear inverse problems under general convex constraints, Inverse Probl. Imag., 1 (2007), 29-46.  doi: 10.3934/ipi.2007.1.29.

[19]

N. DeyL. Blanc-FeraudC. ZimmerP. RouxZ. KamJ. Olivo-Marin and J. Zerubia, Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsc. Res. Tech., 69 (2006), 260-266.  doi: 10.1002/jemt.20294.

[20]

B. DongH. JiZ. W. Shen and Y. H. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), 268-279.  doi: 10.1016/j.acha.2011.06.001.

[21]

Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598-1625.  doi: 10.1137/120870621.

[22]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736-3745.  doi: 10.1109/TIP.2006.881969.

[23]

M. EladJ. StarckP. Querre and D. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput Harmon Anal., 19 (2005), 340-358.  doi: 10.1016/j.acha.2005.03.005.

[24]

F. SciacchitanoY. Q. Dong and T. Y. Zeng, Variational approach for restoring blurred images with cauchy noise, SIAM J. Imaging Sci., 8 (2015), 1894-1922.  doi: 10.1137/140997816.

[25]

M. Figueiredo and J. Bioucas-Dias, Restoration of poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), 3133-3145.  doi: 10.1109/TIP.2010.2053941.

[26]

M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906-916.  doi: 10.1109/TIP.2003.814255.

[27]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.  doi: 10.1137/070698592.

[28]

T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.  doi: 10.1137/080725891.

[29]

R. Gonzalez and R. Woods, Digital Image Processing, 3rd edition, Pearson, London, 2008.

[30]

G. Grimmett and D. Welsh, Oxford Science Publications, Oxford Science Publications, London, 1986.

[31]

Y.-M. HuangM. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.  doi: 10.1137/080712593.

[32]

M. Idan and J. Speyer, Cauchy estimation for linear scalar systems, IEEE Trans. Automat. Control, 55 (2010), 1329-1342.  doi: 10.1109/TAC.2010.2042009.

[33]

E. KuruogluW. Fitzgerald and P. Rayner, Near optimal detection of signals in impulsive noise modeled with asymmetric alpha-stable distribution, IEEE Commun. Lett., 2 (1998), 282-284. 

[34]

T. LeR. Chartrand and T. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263.  doi: 10.1007/s10851-007-0652-y.

[35]

J. Liu, Y. Lou, G. Ni and T. Zeng, An image sharpening operator combined with framelet for image deblurring, Inverse Problems, 36 (2020), 29pp. doi: 10.1088/1361-6420/ab6df0.

[36]

J. Liu, A. Ni and G. Ni, A nonconvex $l_1(l_1 - l_2)$ model for image restoration with impulse noise, J. Comput. Appl. Math., 378 (2020), 16pp. doi: 10.1016/j.cam.2020.112934.

[37]

Y. F. Lou and M. Yan, Fast $L1-L2$ minimization via a proximal operator, J. Sci. Comput., 74 (2018), 767-785.  doi: 10.1007/s10915-017-0463-2.

[38]

Y. F. Lou, S. Osher and J. Xin, Computational aspects of constrained L1-L2 minimization for compressive sensing, J. Infect. Dis., (2015), 169–180.

[39]

Y. LouT. ZengS. Osher and J. Xin, A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8 (2015), 1798-1823.  doi: 10.1137/14098435X.

[40]

J. MeiY. DongT. Huang and W. Yin, Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci Comput., 74 (2018), 743-766.  doi: 10.1007/s10915-017-0460-5.

[41]

M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), 90-120. 

[42]

Y. PengJ. ChenX. Xu and F. Pu, SAR images statistical modeling and classification based on the mixture of alpha-stable distributions, Remote Sens., 5 (2013), 2145-2163.  doi: 10.3390/rs5052145.

[43]

N. PustelnikC. Chaux and J. Pesquet, Parallel proximal algorithm for image restoration using hybrid regularization, IEEE Trans. Image Process., 20 (2011), 2450-2462.  doi: 10.1109/TIP.2011.2128335.

[44]

P. Reeves, A non-gaussian turbulence simulation, Technical Report AFFDL-TR-, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, (1969), 69–67.

[45]

L. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.

[46]

S. SetzerG. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Visual Commun. Image Represent., 21 (2010), 193-199.  doi: 10.1016/j.jvcir.2009.10.006.

[47]

J. StarckM. Elad and D. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process., 14 (2005), 1570-1582.  doi: 10.1109/TIP.2005.852206.

[48]

T. WanN. Canagarajah and A. Achim, Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5 (2011), 159-170. 

[49]

C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.  doi: 10.1137/090767558.

[50]

J. YangY. Zhang and W. Yin, An effcient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.  doi: 10.1137/080732894.

[51]

P. H. YinY. F. Lou and J. Xin, Minimization of $l_{1-2}$ for compressed sensing, SIAM J. Sci. Comput., 37 (2015), 536-563.  doi: 10.1137/140952363.

[52]

W. ZhouA. BovikH. Sheikh and E. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. 

show all references

References:
[1]

A. Achim and E. Kuruoglu, Image denoising using bivariate -stable distributions in the complex wavelet domain, IEEE Signal Process Letters, 12 (2005), 17-20.  doi: 10.1109/LSP.2004.839692.

[2]

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[3]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2$^nd$ edition, Appl. Math. Sci., 147. Springer, New York, 2006.

[4] A. Bovik, Handbook of Image and Video Processing, Academic Press, New York, 2000. 
[5]

S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122.  doi: 10.1561/9781601984616.

[6]

J. F. CaiR. ChanL. Shen and Z. Shen, Convergence analysis of tight framelet approach for missing data recovery, Adv. Comput. Math., 31 (2009), 87-113.  doi: 10.1007/s10444-008-9084-5.

[7]

J. F. CaiR. Chan and Z. Shen, Simultaneous cartoon and texture inpainting, Inverse Probl. Imaging, 4 (2010), 379-395.  doi: 10.3934/ipi.2010.4.379.

[8]

M. C. Cai and X. Q. Jin, BCCB preconditioners for solving linear systems from delay differential equations, Comput. Math. Appl., 50 (2005), 281-288.  doi: 10.1016/j.camwa.2004.03.019.

[9]

A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. 

[10]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.

[11]

R. ChanY. Dong and M. Hintermuller, An effcient two-phase $L_1$-TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19 (2010), 1731-1739.  doi: 10.1109/TIP.2010.2045148.

[12]

T. F. ChanG. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.  doi: 10.1137/S1064827596299767.

[13]

R. ChanH. Yang and T. Zeng, A two-stage image segmentation method for blurry images with Poisson or multiplicative gamma noise, SIAM J. Imaging Sci., 7 (2014), 98-127.  doi: 10.1137/130920241.

[14]

R. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427-482.  doi: 10.1137/S0036144594276474.

[15]

R. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers. Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. doi: 10.1137/1.9780898718850.

[16]

Y. ChangS. KadabaP. Doerschuk and S. Gelfand, Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65-66. 

[17]

L. Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl., 158 (2013), 460-479.  doi: 10.1007/s10957-012-0245-9.

[18]

I. DaubechiesG. Teschke and L. Vese, Iteratively solving linear inverse problems under general convex constraints, Inverse Probl. Imag., 1 (2007), 29-46.  doi: 10.3934/ipi.2007.1.29.

[19]

N. DeyL. Blanc-FeraudC. ZimmerP. RouxZ. KamJ. Olivo-Marin and J. Zerubia, Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsc. Res. Tech., 69 (2006), 260-266.  doi: 10.1002/jemt.20294.

[20]

B. DongH. JiZ. W. Shen and Y. H. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), 268-279.  doi: 10.1016/j.acha.2011.06.001.

[21]

Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598-1625.  doi: 10.1137/120870621.

[22]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736-3745.  doi: 10.1109/TIP.2006.881969.

[23]

M. EladJ. StarckP. Querre and D. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput Harmon Anal., 19 (2005), 340-358.  doi: 10.1016/j.acha.2005.03.005.

[24]

F. SciacchitanoY. Q. Dong and T. Y. Zeng, Variational approach for restoring blurred images with cauchy noise, SIAM J. Imaging Sci., 8 (2015), 1894-1922.  doi: 10.1137/140997816.

[25]

M. Figueiredo and J. Bioucas-Dias, Restoration of poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), 3133-3145.  doi: 10.1109/TIP.2010.2053941.

[26]

M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906-916.  doi: 10.1109/TIP.2003.814255.

[27]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.  doi: 10.1137/070698592.

[28]

T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.  doi: 10.1137/080725891.

[29]

R. Gonzalez and R. Woods, Digital Image Processing, 3rd edition, Pearson, London, 2008.

[30]

G. Grimmett and D. Welsh, Oxford Science Publications, Oxford Science Publications, London, 1986.

[31]

Y.-M. HuangM. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.  doi: 10.1137/080712593.

[32]

M. Idan and J. Speyer, Cauchy estimation for linear scalar systems, IEEE Trans. Automat. Control, 55 (2010), 1329-1342.  doi: 10.1109/TAC.2010.2042009.

[33]

E. KuruogluW. Fitzgerald and P. Rayner, Near optimal detection of signals in impulsive noise modeled with asymmetric alpha-stable distribution, IEEE Commun. Lett., 2 (1998), 282-284. 

[34]

T. LeR. Chartrand and T. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263.  doi: 10.1007/s10851-007-0652-y.

[35]

J. Liu, Y. Lou, G. Ni and T. Zeng, An image sharpening operator combined with framelet for image deblurring, Inverse Problems, 36 (2020), 29pp. doi: 10.1088/1361-6420/ab6df0.

[36]

J. Liu, A. Ni and G. Ni, A nonconvex $l_1(l_1 - l_2)$ model for image restoration with impulse noise, J. Comput. Appl. Math., 378 (2020), 16pp. doi: 10.1016/j.cam.2020.112934.

[37]

Y. F. Lou and M. Yan, Fast $L1-L2$ minimization via a proximal operator, J. Sci. Comput., 74 (2018), 767-785.  doi: 10.1007/s10915-017-0463-2.

[38]

Y. F. Lou, S. Osher and J. Xin, Computational aspects of constrained L1-L2 minimization for compressive sensing, J. Infect. Dis., (2015), 169–180.

[39]

Y. LouT. ZengS. Osher and J. Xin, A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8 (2015), 1798-1823.  doi: 10.1137/14098435X.

[40]

J. MeiY. DongT. Huang and W. Yin, Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci Comput., 74 (2018), 743-766.  doi: 10.1007/s10915-017-0460-5.

[41]

M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), 90-120. 

[42]

Y. PengJ. ChenX. Xu and F. Pu, SAR images statistical modeling and classification based on the mixture of alpha-stable distributions, Remote Sens., 5 (2013), 2145-2163.  doi: 10.3390/rs5052145.

[43]

N. PustelnikC. Chaux and J. Pesquet, Parallel proximal algorithm for image restoration using hybrid regularization, IEEE Trans. Image Process., 20 (2011), 2450-2462.  doi: 10.1109/TIP.2011.2128335.

[44]

P. Reeves, A non-gaussian turbulence simulation, Technical Report AFFDL-TR-, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, (1969), 69–67.

[45]

L. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.

[46]

S. SetzerG. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Visual Commun. Image Represent., 21 (2010), 193-199.  doi: 10.1016/j.jvcir.2009.10.006.

[47]

J. StarckM. Elad and D. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process., 14 (2005), 1570-1582.  doi: 10.1109/TIP.2005.852206.

[48]

T. WanN. Canagarajah and A. Achim, Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5 (2011), 159-170. 

[49]

C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.  doi: 10.1137/090767558.

[50]

J. YangY. Zhang and W. Yin, An effcient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.  doi: 10.1137/080732894.

[51]

P. H. YinY. F. Lou and J. Xin, Minimization of $l_{1-2}$ for compressed sensing, SIAM J. Sci. Comput., 37 (2015), 536-563.  doi: 10.1137/140952363.

[52]

W. ZhouA. BovikH. Sheikh and E. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. 

Figure 1.  Testing images
Figure 2.  Restored images from blurred and noised images by different methods. (a):Images with Cauchy noise ($ \xi = 0.02 $) and Gaussian blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method
Figure 3.  Restored images from blurred and noised images by different methods. (a):Images with Cauchy noise ($ \xi = 0.04 $) and Gaussian blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method
Figure 4.  Restored images from blurred and noised images by different methods. (a):Images destroyed by Cauchy noise($ \xi = 0.02 $) and motion blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method
Figure 5.  Restored images from blurred and noised images by different methods. (a):Images destroyed by Cauchy noise($ \xi = 0.02 $) and average blur; (b): Results by median filter (MD); (c): Results by convex TV method; (d): Results by our method
Table 1.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods ($ \xi = 0.02 $, Gaussian blur)
Image Value Corrupted MD TV Ours
Lena SNR 5.76 12.43 14.31 14.93
PSNR 18.47 24.39 27.64 28.21
SSIM 0.1951 0.7884 0.8168 0.8389
Cameraman SNR 6.16 11.72 13.69 14.57
PSNR 18.19 24.39 26.08 26.84
SSIM 0.1566 0.7483 0.8061 0.8083
Parrot SNR 6.65 12.15 14.85 15.72
PSNR 18.27 24.42 26.72 27.50
SSIM 0.1909 0.7833 0.8239 0.8394
Boat SNR 6.80 13.85 15.40 16.52
PSNR 18.02 25.70 27.02 28.07
SSIM 0.1981 0.7935 0.8286 0.8559
Kitten SNR 6.15 10.13 11.86 13.01
PSNR 17.98 22.67 24.03 25.06
SSIM 0.2496 0.7195 0.7696 0.8161
House SNR 5.03 13.70 16.11 17.05
PSNR 18.38 28.48 30.52 31.44
SSIM 0.1425 0.7908 0.8304 0.8494
Image Value Corrupted MD TV Ours
Lena SNR 5.76 12.43 14.31 14.93
PSNR 18.47 24.39 27.64 28.21
SSIM 0.1951 0.7884 0.8168 0.8389
Cameraman SNR 6.16 11.72 13.69 14.57
PSNR 18.19 24.39 26.08 26.84
SSIM 0.1566 0.7483 0.8061 0.8083
Parrot SNR 6.65 12.15 14.85 15.72
PSNR 18.27 24.42 26.72 27.50
SSIM 0.1909 0.7833 0.8239 0.8394
Boat SNR 6.80 13.85 15.40 16.52
PSNR 18.02 25.70 27.02 28.07
SSIM 0.1981 0.7935 0.8286 0.8559
Kitten SNR 6.15 10.13 11.86 13.01
PSNR 17.98 22.67 24.03 25.06
SSIM 0.2496 0.7195 0.7696 0.8161
House SNR 5.03 13.70 16.11 17.05
PSNR 18.38 28.48 30.52 31.44
SSIM 0.1425 0.7908 0.8304 0.8494
Table 2.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods ($ \xi = 0.04 $, Gaussian blur)
Image Value Corrupted MD TV Ours
Lena SNR 3.8 11.24 12.94 13.35
PSNR 15.87 23.53 26.31 26.65
SSIM 0.0928 0.6944 0.7675 0.7928
Cameraman SNR 4.16 10.88 12.39 13.09
PSNR 15.67 23.53 24.94 25.44
SSIM 0.0761 0.6241 0.7532 0.7602
Parrot SNR 4.58 11.19 13.46 14.12
PSNR 15.75 23.55 25.40 25.91
SSIM 0.0964 0.6752 0.7763 0.7847
Boat SNR 4.65 12.59 14.13 14.81
PSNR 15.33 24.50 25.83 26.41
SSIM 0.0932 0.6936 0.7843 0.8074
Kitten SNR 4.24 9.52 10.48 11.37
PSNR 15.46 22.02 22.76 23.48
SSIM 0.1235 0.6611 0.6967 0.7413
House SNR 3.19 11.83 14.61 15.29
PSNR 15.53 26.49 29.16 29.70
SSIM 0.0636 0.6628 0.8159 0.8216
Image Value Corrupted MD TV Ours
Lena SNR 3.8 11.24 12.94 13.35
PSNR 15.87 23.53 26.31 26.65
SSIM 0.0928 0.6944 0.7675 0.7928
Cameraman SNR 4.16 10.88 12.39 13.09
PSNR 15.67 23.53 24.94 25.44
SSIM 0.0761 0.6241 0.7532 0.7602
Parrot SNR 4.58 11.19 13.46 14.12
PSNR 15.75 23.55 25.40 25.91
SSIM 0.0964 0.6752 0.7763 0.7847
Boat SNR 4.65 12.59 14.13 14.81
PSNR 15.33 24.50 25.83 26.41
SSIM 0.0932 0.6936 0.7843 0.8074
Kitten SNR 4.24 9.52 10.48 11.37
PSNR 15.46 22.02 22.76 23.48
SSIM 0.1235 0.6611 0.6967 0.7413
House SNR 3.19 11.83 14.61 15.29
PSNR 15.53 26.49 29.16 29.70
SSIM 0.0636 0.6628 0.8159 0.8216
Table 3.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods($ \xi = 0.02 $, motion blur)
Image Value Corrupted MD TV Ours
Lena SNR 4.15 7.78 11.66 12.40
PSNR 17.37 22.05 25.16 25.73
SSIM 0.1294 0.6209 0.7328 0.7969
Cameraman SNR 4.98 8.60 11.60 12.42
PSNR 17.19 21.53 24.13 24.60
SSIM 0.1149 0.6478 0.7777 0.7797
Parrot SNR 5.73 9.61 12.16 13.28
PSNR 17.46 22.00 24.15 24.73
SSIM 0.1574 0.7011 0.7782 0.7848
Boat SNR 5.93 10.80 13.02 13.68
PSNR 17.23 22.77 24.77 25.27
SSIM 0.1458 0.6731 0.7652 0.7675
Kitten SNR 4.93 7.63 10.15 10.76
PSNR 16.92 20.37 22.44 22.87
SSIM 0.1802 0.5619 0.6901 0.7216
House SNR 4.54 10.72 14.85 15.65
PSNR 18.01 25.60 29.34 30.03
SSIM 0.1272 0.7211 0.8192 0.8264
Image Value Corrupted MD TV Ours
Lena SNR 4.15 7.78 11.66 12.40
PSNR 17.37 22.05 25.16 25.73
SSIM 0.1294 0.6209 0.7328 0.7969
Cameraman SNR 4.98 8.60 11.60 12.42
PSNR 17.19 21.53 24.13 24.60
SSIM 0.1149 0.6478 0.7777 0.7797
Parrot SNR 5.73 9.61 12.16 13.28
PSNR 17.46 22.00 24.15 24.73
SSIM 0.1574 0.7011 0.7782 0.7848
Boat SNR 5.93 10.80 13.02 13.68
PSNR 17.23 22.77 24.77 25.27
SSIM 0.1458 0.6731 0.7652 0.7675
Kitten SNR 4.93 7.63 10.15 10.76
PSNR 16.92 20.37 22.44 22.87
SSIM 0.1802 0.5619 0.6901 0.7216
House SNR 4.54 10.72 14.85 15.65
PSNR 18.01 25.60 29.34 30.03
SSIM 0.1272 0.7211 0.8192 0.8264
Table 4.  The SNR, PSNR and SSIM values for corrupted images and recovered images given by different methods($ \xi = 0.02 $, average blur)
Image Value Corrupted MD TV Ours
Lena SNR 5.87 12.88 14.56 15.35
PSNR 18.55 26.47 27.87 28.64
SSIM 0.1991 0.8031 0.8203 0.8534
Cameraman SNR 6.20 12.04 14.17 15.16
PSNR 18.15 24.65 26.54 27.40
SSIM 0.1571 0.7623 0.8077 0.8309
Parrot SNR 6.78 12.64 15.35 16.11
PSNR 18.34 24.83 27.20 27.88
SSIM 0.1938 0.7974 0.8228 0.8542
Boat SNR 6.86 14.24 15.79 16.90
PSNR 18.00 26.04 27.38 28.45
SSIM 0.2014 0.8075 0.8345 0.8701
Kitten SNR 6.31 10.62 12.46 13.39
PSNR 18.06 23.08 24.56 25.38
SSIM 0.2598 0.7467 0.7956 0.8327
House SNR 5.09 14.08 16.54 17.41
PSNR 18.39 28.70 30.98 31.81
SSIM 0.1436 0.8013 0.8448 0.8581
Image Value Corrupted MD TV Ours
Lena SNR 5.87 12.88 14.56 15.35
PSNR 18.55 26.47 27.87 28.64
SSIM 0.1991 0.8031 0.8203 0.8534
Cameraman SNR 6.20 12.04 14.17 15.16
PSNR 18.15 24.65 26.54 27.40
SSIM 0.1571 0.7623 0.8077 0.8309
Parrot SNR 6.78 12.64 15.35 16.11
PSNR 18.34 24.83 27.20 27.88
SSIM 0.1938 0.7974 0.8228 0.8542
Boat SNR 6.86 14.24 15.79 16.90
PSNR 18.00 26.04 27.38 28.45
SSIM 0.2014 0.8075 0.8345 0.8701
Kitten SNR 6.31 10.62 12.46 13.39
PSNR 18.06 23.08 24.56 25.38
SSIM 0.2598 0.7467 0.7956 0.8327
House SNR 5.09 14.08 16.54 17.41
PSNR 18.39 28.70 30.98 31.81
SSIM 0.1436 0.8013 0.8448 0.8581
[1]

Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems and Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917

[2]

Jianbin Yang, Cong Wang. A wavelet frame approach for removal of mixed Gaussian and impulse noise on surfaces. Inverse Problems and Imaging, 2017, 11 (5) : 783-798. doi: 10.3934/ipi.2017037

[3]

Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1783-1799. doi: 10.3934/jimo.2019029

[4]

Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030

[5]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial and Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[6]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[7]

Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247

[8]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial and Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037

[9]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1173-1185. doi: 10.3934/jimo.2020016

[10]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

[11]

Yan Gu, Nobuo Yamashita. Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 487-510. doi: 10.3934/naco.2020047

[12]

Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial and Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078

[13]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems and Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[14]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[15]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems and Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[16]

Zhiwei Tian, Yanyan Shi, Meng Wang, Xiaolong Kong, Lei Li, Feng Fu. A wavelet frame constrained total generalized variation model for imaging conductivity distribution. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021074

[17]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems and Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[18]

Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

Hao Yang, Hang Qiu, Leiting Chen. An optimized direction statistics for detecting and removing random-valued impulse noise. Journal of Industrial and Management Optimization, 2018, 14 (2) : 597-611. doi: 10.3934/jimo.2017062

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (381)
  • HTML views (235)
  • Cited by (0)

Other articles
by authors

[Back to Top]