[1]
|
E. J. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2004), 489-509.
doi: 10.1109/TIT.2005.862083.
|
[2]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[3]
|
L. Deng, M. Feng and X. Tai, The fusion of panchromatic and multispectral remote sensing images via tensor-based sparse modeling and hyper-Laplacian prior, Inform Fusion, 52 (2019), 76-89.
|
[4]
|
S. Fujieda, K. Takayama and T. Hachisuka, Wavelet Convolutional Neural Networks, CoRR, 2018.
|
[5]
|
H. Huang, R. He, Z. Sun and T. Tan, Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution, 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 1698–1706.
doi: 10.1109/ICCV.2017.187.
|
[6]
|
C. M. Hyun, H. P. Kim, S. M. Lee, S. C. Lee and J. K. Seo, Deep learning for undersampled MRI reconstruction, Phys. Med. Biol., 63 (2018).
|
[7]
|
T. B. Kai, M. Uecker and J. Frahm, Undersampled radial MRI with multiple coils. iterative image reconstruction using a total variation constraint, Magn. Reson. Med., 57 (2007), 1086-1098.
|
[8]
|
D. P. Kingma and J. L. Ba, ADAM: A method for stochastic optimization, In Int Conf on Learning Representations, 2015.
|
[9]
|
H. Li, B. S. Manjunath and S. K. Mitra, Multisensor image fusion using the wavelet transform, Graphical Models and Image Processing, 57 (1995), 235-245.
doi: 10.1006/gmip.1995.1022.
|
[10]
|
L. Li, B. Wang and G. Wang, A self-adaptive mask-enhanced dual-dictionary learning method for MRI-CT image reconstruction, In Nuclear Science Symposium & Medical Imaging Conf, 2016.
|
[11]
|
P. Liu, H. Zhang, K. Zhang, L. Lin and W. Zuo, Multi-level wavelet-cnn for image restoration, In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.
doi: 10.1109/CVPRW.2018.00121.
|
[12]
|
G. Pajares and J. M. D. L. Cruz, A wavelet-based image fusion tutorial, Pattern Recogn, 37 (2004), 1855-1872.
|
[13]
|
Y. Quan, H. Ji and Z. Shen, Data-driven multi-scale non-local wavelet frame construction and image recovery, J. Sci. Comput., 63 (2015), 307-329.
doi: 10.1007/s10915-014-9893-2.
|
[14]
|
R. Singh, M. Vatsa and A. Noore, Multimodal medical image fusion using redundant discrete wavelet transform, InInt. Conf. on Advances in Pattern Recognition, (2009), 232–235.
doi: 10.1109/ICAPR.2009.97.
|
[15]
|
D. W. Townsend, Multimodality imaging of structure and function, Phys. Med. Biol., 53 (2008), 1-39.
doi: 10.1088/0031-9155/53/4/R01.
|
[16]
|
L. Xiang, Y. Chen, W. Chang, Y. Zhan, W. Lin, Q. Wang and D. Shen, Ultra-fast t2-weighted mr reconstruction using complementary t1-weighted information, International Conference on Medical Image Computing and Computer-Assisted Intervention, 11070 (2018), 215-223.
doi: 10.1007/978-3-030-00928-1_25.
|
[17]
|
J. C. Ye, Y. Han and E. Cha, Deep convolutional framelets: A general deep learning for inverse problems, SIAM J. Imaginig Sci., 11 (2017), 991-1048.
doi: 10.1137/17M1141771.
|
[18]
|
R. Yin, T. Gao, Y. M. Lu and I. Daubechies, A tale of two bases: Local-nonlocal regularization on image patches with convolution framelets, SIAM J. Imaginig Sci., 10 (2017), 711-750.
doi: 10.1137/16M1091447.
|
[19]
|
K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Transactions on Image Processing, 26 (2017), 3142-3155.
doi: 10.1109/TIP.2017.2662206.
|
[20]
|
Y. Zhang and X. Zhang, PET-MRI joint reconstruction with common edge weighted total variation regularization, Inverse Probl., 34 (2018), 76-89.
doi: 10.1088/1361-6420/aabce9.
|