[1]
|
A. B. Bakushinskii, M. V. Klibanov and N. A. Koshev, Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs, Nonlinear Anal. Real World Appl., 34 (2017), 201-224.
doi: 10.1016/j.nonrwa.2016.08.008.
|
[2]
|
L. Baudouin, M. de Buhan and S. Ervedoza, Convergent algorithm based on Carleman estimates for the recovery of a potential in the wave equation, SIAM J. Nummer. Anal., 55 (2017), 1578-1613.
doi: 10.1137/16M1088776.
|
[3]
|
L. Baudouin, M. de Buhan, S. Ervedoza and A. Osses, Carleman-based reconstruction algorithm for waves, SIAM J. Numerical Analysis, 59 (2021), 998-1039.
doi: 10.1137/20M1315798.
|
[4]
|
L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012.
|
[5]
|
M. Boulakia, M. de Buhan and E. Schwindt, Numerical reconstruction based on Carleman estimates of a source term in a reaction-diffusion equation, ESAIM Control Optim. Calc. Var., 27 (2021), 34pp.
doi: 10.1051/cocv/2020086.
|
[6]
|
A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.
|
[7]
|
H. T. Chuah, K. Y. Lee and T. W. Lau, Dielectric constants of rubber and oil palm leaf samples at X-band, IEEE Trans. Geosci. Remote Sens, 33 (1995), 221-223.
|
[8]
|
V. Isakov, Inverse Problems for Partial Differential Equations, 3$^nd$ edition, Applied Mathematical Sciences, 127. Springer, Cham, 2017.
doi: 10.1007/978-3-319-51658-5.
|
[9]
|
A. L. Karchevsky, M. V. Klibanov, L. Nguyen, N. Pantong and A. Sullivan, The Krein method and the globally convergent method for experimental data, Appl. Numer. Math., 74 (2013), 111-127.
doi: 10.1016/j.apnum.2013.09.003.
|
[10]
|
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123. Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220.
|
[11]
|
V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. Nguyen, A. Sullivan and V. N. Astratov, Convexification and experimental data for a 3D inverse scattering problem with the moving point source, Inverse Problems, 36 (2020), 34pp.
doi: 10.1088/1361-6420/ab95aa.
|
[12]
|
V. A. Khoa, M. V. Klibanov and L. H. Nguyen, Convexification for a three-dimensional inverse scattering problem with the moving point source, SIAM J. Imaging Sci., 13 (2020), 871-904.
doi: 10.1137/19M1303101.
|
[13]
|
M. V. Klibanov, Inverse problems and C arleman estimates, Inverse Problems, 8 (1992), 575-596.
doi: 10.1088/0266-5611/8/4/009.
|
[14]
|
M. V. Klibanov and O. V. Ioussoupova, Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem, SIAM J. Math. Anal., 26 (1995), 147-179.
doi: 10.1137/S0036141093244039.
|
[15]
|
M. V. Klibanov, Global convexity in a three-dimensional inverse acoustic problem, SIAM J. Math. Anal., 28 (1997), 1371-1388.
doi: 10.1137/S0036141096297364.
|
[16]
|
M. V. Klibanov, Global convexity in diffusion tomography, Nonlinear World, 4 (1997), 247-265.
|
[17]
|
M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.
doi: 10.1515/jip-2012-0072.
|
[18]
|
M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems, Appl. Numer. Math., 94 (2015), 46-74.
doi: 10.1016/j.apnum.2015.02.003.
|
[19]
|
M. V. Klibanov, L. H. Nguyen, A. Sullivan and L. Nguyen, A globally convergent numerical method for a 1-d inverse medium problem with experimental data, Inverse Probl. Imaging, 10 (2016), 1057-1085.
doi: 10.3934/ipi.2016032.
|
[20]
|
M. V. Klibanov, Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs, Inverse Problems, 31 (2015), 20pp.
doi: 10.1088/0266-5611/31/12/125007.
|
[21]
|
M. V. Klibanov, Convexification of restricted Dirichlet to Neumann map, J. Inverse Ill-Posed Probl., 25 (2017), 669-685.
doi: 10.1515/jiip-2017-0067.
|
[22]
|
M. V. Klibanov, V. A. Khoa, A. V. Smirnov, L. H. Nguyen, G. W. Bidney, L. Nguyen, A. Sullivan and V. N. Astratov, Convexification inversion method for nonlinear SAR imaging with experimentally collected data. Preprint, arXiv: 2103.10431, 2021.
|
[23]
|
M. V. Klibanov and A. E. Kolesov, Convexification of a 3-D coefficient inverse scattering problem, Comput. Math. Appl., 77 (2019), 1681-1702.
doi: 10.1016/j.camwa.2018.03.016.
|
[24]
|
M. V. Klibanov, A. E. Kolesov and D.-L. Nguyen, Convexification method for an inverse scattering problem and its performance for experimental backscatter data for buried targets, SIAM J. Imaging Sci., 12 (2019), 576-603.
doi: 10.1137/18M1191658.
|
[25]
|
M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan, Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data, SIAM J. Appl. Math., 77 (2017), 1733-1755.
doi: 10.1137/17M1122487.
|
[26]
|
M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan, A new version of the convexification method for a 1-D coefficient inverse problem with experimental data, Inverse Problems, 34 (2018), 29pp.
doi: 10.1088/1361-6420/aadbc6.
|
[27]
|
M. V. Klibanov, J. Li and W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Problems, 35 (2019), 33pp.
doi: 10.1088/1361-6420/aafecd.
|
[28]
|
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2004.
doi: 10.1515/9783110915549.
|
[29]
|
M. V. Klibanov, J. Li and W. Zhang, Convexification for an inverse parabolic problem, Inverse Problems, 36 (2020), 32pp.
doi: 10.1088/1361-6420/ab9893.
|
[30]
|
M. V. Klibanov, J. Li and W. Zhang, Convexification for the inversion of a time dependent wave front in a heterogeneous medium, SIAM J. Appl. Math., 79 (2019), 1722-1747.
doi: 10.1137/18M1236034.
|
[31]
|
M. V. Klibanov, J. Li and W. Zhang, Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem, SIAM J. Appl. Math., 81 (2020), 1954-1978.
doi: 10.1137/20M1376558.
|
[32]
|
M. V. Klibanov, A. Smirnov, V. A. Khoa, A. Sullivan and L. Nguyen, Through-the-wall nonlinear SAR imaging, IEEE Transactions on Geoscience and Remote Sensing, 59 (2021), 7475-7486.
doi: 10.1109/TGRS.2021.3055805.
|
[33]
|
M. V. Klibanov and J. Li, Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data, De Gruyter, 2021.
|
[34]
|
J. Korpela, M. Lassas and L. Oksanen, Regularization strategy for an inverse problem for a 1+1 dimensional wave equation, Inverse Problems, 32 (2016), 24pp.
doi: 10.1088/0266-5611/32/6/065001.
|
[35]
|
A. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/9/095007.
|
[36]
|
A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy., Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method, IEEE Trans. Geosci. Remote Sens, 51 (2013), 2937-2948.
doi: 10.1109/TGRS.2012.2211885.
|
[37]
|
R. Lattès and J. L. Lions, The Method of Quasireversibility: Applications to Partial Differential Equations, American Elsevier Publishing Co., Inc., New York 1969.
|
[38]
|
M. M. Lavrent'ev, On an inverse problem for the wave equation, Soviet Mathematics Doklady, 5 (1964), 970-972.
|
[39]
|
M. M. Lavrent'ev, V. G. Romanov and S. P. Shishatskiĭ, Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs. AMS, Providence: RI, 1986.
|
[40]
|
T. T. Le and L. H. Nguyen, A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data, J. Inverse and Ill-posed Problems, 2020.
doi: 10.1515/jiip-2020-0028.
|
[41]
|
T. T. Le and L. H. Nguyen, The gradient descent method for the convexification to solve boundary value problems of quasi-linear PDEs and a coefficient inverse problem, preprint, arXiv: 2103.04159, 2021.
|
[42]
|
B. M. Levitan, Inverse Sturm–Liouville Problems, O. Efimov. VSP, Zeist, 1987.
|
[43]
|
M. Minoux, Mathematical Programming: Theory and Algorithms, John Wiley & Sons, Ltd., Chichester, 1986.
|
[44]
|
C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic D irichlet-to- Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.
doi: 10.1080/03605302.2013.843429.
|
[45]
|
L. H. Nguyen, An inverse space-dependent source problem for hyperbolic equations and the L ipschitz-like convergence of the quasi-reversibility method, Inverse Problems, 35 (2019), 28pp.
doi: 10.1088/1361-6420/aafe8f.
|
[46]
|
L. H. Nguyen, Q. Li and M. V. Klibanov., A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media, Inverse Probl. Imaging, 13 (2009), 1067-1094.
doi: 10.3934/ipi.2019048.
|
[47]
|
N. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina and K. Kappra, Obstacle avolidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse Reconstruction (UWB SIRE) forward imaging radar, Proc. SPIE, (2007), 1–8.
|
[48]
|
V. G. Romanov, Inverse Problems of Mathematical Physics, De Gruyter, 1986.
|
[49]
|
J. A. Scales, M. L. Smith and T. L. Fischer, Global optimization methods for multimodal inverse problems., J. Computational Physics, 103 (1992), 258-268.
|
[50]
|
A. V. Smirnov, M. V. Klibanov and L. H. Nguyen, Convexification for a 1D hyperbolic coefficient inverse problem with single measurement data, Inverse Probl. Imaging, 14 (2020), 913-938.
doi: 10.3934/ipi.2020042.
|
[51]
|
A. V. Smirnov, M. V. Klibanov, A. Sullivan and L. H. Nguyen, Convexifcation for an inverse problem for a 1d wave equation with experimental data, Inverse Problems, 36 (2020), 32pp.
doi: 10.1088/1361-6420/abac9a.
|
[52]
|
A. N. Tikhonov, A. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and its Applications, 328. Kluwer Academic Publishers Group, Dordrecht, 1995.
doi: 10.1007/978-94-015-8480-7.
|
[53]
|
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 75pp.
doi: 10.1088/0266-5611/25/12/123013.
|