
-
Previous Article
A Carleman estimate and an energy method for a first-order symmetric hyperbolic system
- IPI Home
- This Issue
-
Next Article
Quasiconformal model with CNN features for large deformation image registration
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data
1. | Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA |
2. | US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA |
To compute the spatially distributed dielectric constant from the backscattering computationally simulated ane experimentally collected data, we study a coefficient inverse problem for a 1D hyperbolic equation. To solve this inverse problem, we establish a new version of the Carleman estimate and then employ this estimate to construct a cost functional, which is strictly convex on a convex bounded set of an arbitrary diameter in a Hilbert space. The strict convexity property is rigorously proved. This result is called the convexification theorem and it is the central analytical result of this paper. Minimizing this cost functional by the gradient descent method, we obtain the desired numerical solution to the coefficient inverse problems. We prove that the gradient descent method generates a sequence converging to the minimizer starting from an arbitrary point of that bounded set. We also establish a theorem confirming that the minimizer converges to the true solution as the noise in the measured data and the regularization parameter tend to zero. Unlike the methods, which are based on the optimization, our convexification method converges globally in the sense that it delivers a good approximation of the exact solution without requiring a good initial guess. Results of numerical studies of both computationally simulated and experimentally collected data are presented.
References:
[1] |
A. B. Bakushinskii, M. V. Klibanov and N. A. Koshev,
Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs, Nonlinear Anal. Real World Appl., 34 (2017), 201-224.
doi: 10.1016/j.nonrwa.2016.08.008. |
[2] |
L. Baudouin, M. de Buhan and S. Ervedoza,
Convergent algorithm based on Carleman estimates for the recovery of a potential in the wave equation, SIAM J. Nummer. Anal., 55 (2017), 1578-1613.
doi: 10.1137/16M1088776. |
[3] |
L. Baudouin, M. de Buhan, S. Ervedoza and A. Osses,
Carleman-based reconstruction algorithm for waves, SIAM J. Numerical Analysis, 59 (2021), 998-1039.
doi: 10.1137/20M1315798. |
[4] |
L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012. |
[5] |
M. Boulakia, M. de Buhan and E. Schwindt, Numerical reconstruction based on Carleman estimates of a source term in a reaction-diffusion equation, ESAIM Control Optim. Calc. Var., 27 (2021), 34pp.
doi: 10.1051/cocv/2020086. |
[6] |
A. L. Bukhgeim and M. V. Klibanov,
Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.
|
[7] |
H. T. Chuah, K. Y. Lee and T. W. Lau,
Dielectric constants of rubber and oil palm leaf samples at X-band, IEEE Trans. Geosci. Remote Sens, 33 (1995), 221-223.
|
[8] |
V. Isakov, Inverse Problems for Partial Differential Equations, 3$^nd$ edition, Applied Mathematical Sciences, 127. Springer, Cham, 2017.
doi: 10.1007/978-3-319-51658-5. |
[9] |
A. L. Karchevsky, M. V. Klibanov, L. Nguyen, N. Pantong and A. Sullivan,
The Krein method and the globally convergent method for experimental data, Appl. Numer. Math., 74 (2013), 111-127.
doi: 10.1016/j.apnum.2013.09.003. |
[10] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123. Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[11] |
V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. Nguyen, A. Sullivan and V. N. Astratov, Convexification and experimental data for a 3D inverse scattering problem with the moving point source, Inverse Problems, 36 (2020), 34pp.
doi: 10.1088/1361-6420/ab95aa. |
[12] |
V. A. Khoa, M. V. Klibanov and L. H. Nguyen,
Convexification for a three-dimensional inverse scattering problem with the moving point source, SIAM J. Imaging Sci., 13 (2020), 871-904.
doi: 10.1137/19M1303101. |
[13] |
M. V. Klibanov,
Inverse problems and C arleman estimates, Inverse Problems, 8 (1992), 575-596.
doi: 10.1088/0266-5611/8/4/009. |
[14] |
M. V. Klibanov and O. V. Ioussoupova,
Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem, SIAM J. Math. Anal., 26 (1995), 147-179.
doi: 10.1137/S0036141093244039. |
[15] |
M. V. Klibanov,
Global convexity in a three-dimensional inverse acoustic problem, SIAM J. Math. Anal., 28 (1997), 1371-1388.
doi: 10.1137/S0036141096297364. |
[16] |
M. V. Klibanov,
Global convexity in diffusion tomography, Nonlinear World, 4 (1997), 247-265.
|
[17] |
M. V. Klibanov,
Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.
doi: 10.1515/jip-2012-0072. |
[18] |
M. V. Klibanov,
Carleman estimates for the regularization of ill-posed Cauchy problems, Appl. Numer. Math., 94 (2015), 46-74.
doi: 10.1016/j.apnum.2015.02.003. |
[19] |
M. V. Klibanov, L. H. Nguyen, A. Sullivan and L. Nguyen,
A globally convergent numerical method for a 1-d inverse medium problem with experimental data, Inverse Probl. Imaging, 10 (2016), 1057-1085.
doi: 10.3934/ipi.2016032. |
[20] |
M. V. Klibanov, Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs, Inverse Problems, 31 (2015), 20pp.
doi: 10.1088/0266-5611/31/12/125007. |
[21] |
M. V. Klibanov,
Convexification of restricted Dirichlet to Neumann map, J. Inverse Ill-Posed Probl., 25 (2017), 669-685.
doi: 10.1515/jiip-2017-0067. |
[22] |
M. V. Klibanov, V. A. Khoa, A. V. Smirnov, L. H. Nguyen, G. W. Bidney, L. Nguyen, A. Sullivan and V. N. Astratov, Convexification inversion method for nonlinear SAR imaging with experimentally collected data. Preprint, arXiv: 2103.10431, 2021. |
[23] |
M. V. Klibanov and A. E. Kolesov,
Convexification of a 3-D coefficient inverse scattering problem, Comput. Math. Appl., 77 (2019), 1681-1702.
doi: 10.1016/j.camwa.2018.03.016. |
[24] |
M. V. Klibanov, A. E. Kolesov and D.-L. Nguyen,
Convexification method for an inverse scattering problem and its performance for experimental backscatter data for buried targets, SIAM J. Imaging Sci., 12 (2019), 576-603.
doi: 10.1137/18M1191658. |
[25] |
M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan,
Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data, SIAM J. Appl. Math., 77 (2017), 1733-1755.
doi: 10.1137/17M1122487. |
[26] |
M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan, A new version of the convexification method for a 1-D coefficient inverse problem with experimental data, Inverse Problems, 34 (2018), 29pp.
doi: 10.1088/1361-6420/aadbc6. |
[27] |
M. V. Klibanov, J. Li and W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Problems, 35 (2019), 33pp.
doi: 10.1088/1361-6420/aafecd. |
[28] |
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2004.
doi: 10.1515/9783110915549. |
[29] |
M. V. Klibanov, J. Li and W. Zhang, Convexification for an inverse parabolic problem, Inverse Problems, 36 (2020), 32pp.
doi: 10.1088/1361-6420/ab9893. |
[30] |
M. V. Klibanov, J. Li and W. Zhang,
Convexification for the inversion of a time dependent wave front in a heterogeneous medium, SIAM J. Appl. Math., 79 (2019), 1722-1747.
doi: 10.1137/18M1236034. |
[31] |
M. V. Klibanov, J. Li and W. Zhang,
Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem, SIAM J. Appl. Math., 81 (2020), 1954-1978.
doi: 10.1137/20M1376558. |
[32] |
M. V. Klibanov, A. Smirnov, V. A. Khoa, A. Sullivan and L. Nguyen,
Through-the-wall nonlinear SAR imaging, IEEE Transactions on Geoscience and Remote Sensing, 59 (2021), 7475-7486.
doi: 10.1109/TGRS.2021.3055805. |
[33] |
M. V. Klibanov and J. Li, Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data, De Gruyter, 2021. |
[34] |
J. Korpela, M. Lassas and L. Oksanen, Regularization strategy for an inverse problem for a 1+1 dimensional wave equation, Inverse Problems, 32 (2016), 24pp.
doi: 10.1088/0266-5611/32/6/065001. |
[35] |
A. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/9/095007. |
[36] |
A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy.,
Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method, IEEE Trans. Geosci. Remote Sens, 51 (2013), 2937-2948.
doi: 10.1109/TGRS.2012.2211885. |
[37] |
R. Lattès and J. L. Lions, The Method of Quasireversibility: Applications to Partial Differential Equations, American Elsevier Publishing Co., Inc., New York 1969. |
[38] |
M. M. Lavrent'ev,
On an inverse problem for the wave equation, Soviet Mathematics Doklady, 5 (1964), 970-972.
|
[39] |
M. M. Lavrent'ev, V. G. Romanov and S. P. Shishatskiĭ, Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs. AMS, Providence: RI, 1986. |
[40] |
T. T. Le and L. H. Nguyen, A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data, J. Inverse and Ill-posed Problems, 2020.
doi: 10.1515/jiip-2020-0028. |
[41] |
T. T. Le and L. H. Nguyen, The gradient descent method for the convexification to solve boundary value problems of quasi-linear PDEs and a coefficient inverse problem, preprint, arXiv: 2103.04159, 2021. |
[42] |
B. M. Levitan, Inverse Sturm–Liouville Problems, O. Efimov. VSP, Zeist, 1987. |
[43] |
M. Minoux, Mathematical Programming: Theory and Algorithms, John Wiley & Sons, Ltd., Chichester, 1986. |
[44] |
C. Montalto,
Stable determination of a simple metric, a covector field and a potential from the hyperbolic D irichlet-to- Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.
doi: 10.1080/03605302.2013.843429. |
[45] |
L. H. Nguyen, An inverse space-dependent source problem for hyperbolic equations and the L ipschitz-like convergence of the quasi-reversibility method, Inverse Problems, 35 (2019), 28pp.
doi: 10.1088/1361-6420/aafe8f. |
[46] |
L. H. Nguyen, Q. Li and M. V. Klibanov.,
A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media, Inverse Probl. Imaging, 13 (2009), 1067-1094.
doi: 10.3934/ipi.2019048. |
[47] |
N. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina and K. Kappra, Obstacle avolidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse Reconstruction (UWB SIRE) forward imaging radar, Proc. SPIE, (2007), 1–8. |
[48] |
V. G. Romanov, Inverse Problems of Mathematical Physics, De Gruyter, 1986. |
[49] |
J. A. Scales, M. L. Smith and T. L. Fischer,
Global optimization methods for multimodal inverse problems., J. Computational Physics, 103 (1992), 258-268.
|
[50] |
A. V. Smirnov, M. V. Klibanov and L. H. Nguyen,
Convexification for a 1D hyperbolic coefficient inverse problem with single measurement data, Inverse Probl. Imaging, 14 (2020), 913-938.
doi: 10.3934/ipi.2020042. |
[51] |
A. V. Smirnov, M. V. Klibanov, A. Sullivan and L. H. Nguyen, Convexifcation for an inverse problem for a 1d wave equation with experimental data, Inverse Problems, 36 (2020), 32pp.
doi: 10.1088/1361-6420/abac9a. |
[52] |
A. N. Tikhonov, A. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and its Applications, 328. Kluwer Academic Publishers Group, Dordrecht, 1995.
doi: 10.1007/978-94-015-8480-7. |
[53] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 75pp.
doi: 10.1088/0266-5611/25/12/123013. |
show all references
References:
[1] |
A. B. Bakushinskii, M. V. Klibanov and N. A. Koshev,
Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs, Nonlinear Anal. Real World Appl., 34 (2017), 201-224.
doi: 10.1016/j.nonrwa.2016.08.008. |
[2] |
L. Baudouin, M. de Buhan and S. Ervedoza,
Convergent algorithm based on Carleman estimates for the recovery of a potential in the wave equation, SIAM J. Nummer. Anal., 55 (2017), 1578-1613.
doi: 10.1137/16M1088776. |
[3] |
L. Baudouin, M. de Buhan, S. Ervedoza and A. Osses,
Carleman-based reconstruction algorithm for waves, SIAM J. Numerical Analysis, 59 (2021), 998-1039.
doi: 10.1137/20M1315798. |
[4] |
L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012. |
[5] |
M. Boulakia, M. de Buhan and E. Schwindt, Numerical reconstruction based on Carleman estimates of a source term in a reaction-diffusion equation, ESAIM Control Optim. Calc. Var., 27 (2021), 34pp.
doi: 10.1051/cocv/2020086. |
[6] |
A. L. Bukhgeim and M. V. Klibanov,
Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.
|
[7] |
H. T. Chuah, K. Y. Lee and T. W. Lau,
Dielectric constants of rubber and oil palm leaf samples at X-band, IEEE Trans. Geosci. Remote Sens, 33 (1995), 221-223.
|
[8] |
V. Isakov, Inverse Problems for Partial Differential Equations, 3$^nd$ edition, Applied Mathematical Sciences, 127. Springer, Cham, 2017.
doi: 10.1007/978-3-319-51658-5. |
[9] |
A. L. Karchevsky, M. V. Klibanov, L. Nguyen, N. Pantong and A. Sullivan,
The Krein method and the globally convergent method for experimental data, Appl. Numer. Math., 74 (2013), 111-127.
doi: 10.1016/j.apnum.2013.09.003. |
[10] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123. Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[11] |
V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. Nguyen, A. Sullivan and V. N. Astratov, Convexification and experimental data for a 3D inverse scattering problem with the moving point source, Inverse Problems, 36 (2020), 34pp.
doi: 10.1088/1361-6420/ab95aa. |
[12] |
V. A. Khoa, M. V. Klibanov and L. H. Nguyen,
Convexification for a three-dimensional inverse scattering problem with the moving point source, SIAM J. Imaging Sci., 13 (2020), 871-904.
doi: 10.1137/19M1303101. |
[13] |
M. V. Klibanov,
Inverse problems and C arleman estimates, Inverse Problems, 8 (1992), 575-596.
doi: 10.1088/0266-5611/8/4/009. |
[14] |
M. V. Klibanov and O. V. Ioussoupova,
Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem, SIAM J. Math. Anal., 26 (1995), 147-179.
doi: 10.1137/S0036141093244039. |
[15] |
M. V. Klibanov,
Global convexity in a three-dimensional inverse acoustic problem, SIAM J. Math. Anal., 28 (1997), 1371-1388.
doi: 10.1137/S0036141096297364. |
[16] |
M. V. Klibanov,
Global convexity in diffusion tomography, Nonlinear World, 4 (1997), 247-265.
|
[17] |
M. V. Klibanov,
Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.
doi: 10.1515/jip-2012-0072. |
[18] |
M. V. Klibanov,
Carleman estimates for the regularization of ill-posed Cauchy problems, Appl. Numer. Math., 94 (2015), 46-74.
doi: 10.1016/j.apnum.2015.02.003. |
[19] |
M. V. Klibanov, L. H. Nguyen, A. Sullivan and L. Nguyen,
A globally convergent numerical method for a 1-d inverse medium problem with experimental data, Inverse Probl. Imaging, 10 (2016), 1057-1085.
doi: 10.3934/ipi.2016032. |
[20] |
M. V. Klibanov, Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs, Inverse Problems, 31 (2015), 20pp.
doi: 10.1088/0266-5611/31/12/125007. |
[21] |
M. V. Klibanov,
Convexification of restricted Dirichlet to Neumann map, J. Inverse Ill-Posed Probl., 25 (2017), 669-685.
doi: 10.1515/jiip-2017-0067. |
[22] |
M. V. Klibanov, V. A. Khoa, A. V. Smirnov, L. H. Nguyen, G. W. Bidney, L. Nguyen, A. Sullivan and V. N. Astratov, Convexification inversion method for nonlinear SAR imaging with experimentally collected data. Preprint, arXiv: 2103.10431, 2021. |
[23] |
M. V. Klibanov and A. E. Kolesov,
Convexification of a 3-D coefficient inverse scattering problem, Comput. Math. Appl., 77 (2019), 1681-1702.
doi: 10.1016/j.camwa.2018.03.016. |
[24] |
M. V. Klibanov, A. E. Kolesov and D.-L. Nguyen,
Convexification method for an inverse scattering problem and its performance for experimental backscatter data for buried targets, SIAM J. Imaging Sci., 12 (2019), 576-603.
doi: 10.1137/18M1191658. |
[25] |
M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan,
Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data, SIAM J. Appl. Math., 77 (2017), 1733-1755.
doi: 10.1137/17M1122487. |
[26] |
M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan, A new version of the convexification method for a 1-D coefficient inverse problem with experimental data, Inverse Problems, 34 (2018), 29pp.
doi: 10.1088/1361-6420/aadbc6. |
[27] |
M. V. Klibanov, J. Li and W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Problems, 35 (2019), 33pp.
doi: 10.1088/1361-6420/aafecd. |
[28] |
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2004.
doi: 10.1515/9783110915549. |
[29] |
M. V. Klibanov, J. Li and W. Zhang, Convexification for an inverse parabolic problem, Inverse Problems, 36 (2020), 32pp.
doi: 10.1088/1361-6420/ab9893. |
[30] |
M. V. Klibanov, J. Li and W. Zhang,
Convexification for the inversion of a time dependent wave front in a heterogeneous medium, SIAM J. Appl. Math., 79 (2019), 1722-1747.
doi: 10.1137/18M1236034. |
[31] |
M. V. Klibanov, J. Li and W. Zhang,
Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem, SIAM J. Appl. Math., 81 (2020), 1954-1978.
doi: 10.1137/20M1376558. |
[32] |
M. V. Klibanov, A. Smirnov, V. A. Khoa, A. Sullivan and L. Nguyen,
Through-the-wall nonlinear SAR imaging, IEEE Transactions on Geoscience and Remote Sensing, 59 (2021), 7475-7486.
doi: 10.1109/TGRS.2021.3055805. |
[33] |
M. V. Klibanov and J. Li, Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data, De Gruyter, 2021. |
[34] |
J. Korpela, M. Lassas and L. Oksanen, Regularization strategy for an inverse problem for a 1+1 dimensional wave equation, Inverse Problems, 32 (2016), 24pp.
doi: 10.1088/0266-5611/32/6/065001. |
[35] |
A. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/9/095007. |
[36] |
A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy.,
Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method, IEEE Trans. Geosci. Remote Sens, 51 (2013), 2937-2948.
doi: 10.1109/TGRS.2012.2211885. |
[37] |
R. Lattès and J. L. Lions, The Method of Quasireversibility: Applications to Partial Differential Equations, American Elsevier Publishing Co., Inc., New York 1969. |
[38] |
M. M. Lavrent'ev,
On an inverse problem for the wave equation, Soviet Mathematics Doklady, 5 (1964), 970-972.
|
[39] |
M. M. Lavrent'ev, V. G. Romanov and S. P. Shishatskiĭ, Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs. AMS, Providence: RI, 1986. |
[40] |
T. T. Le and L. H. Nguyen, A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data, J. Inverse and Ill-posed Problems, 2020.
doi: 10.1515/jiip-2020-0028. |
[41] |
T. T. Le and L. H. Nguyen, The gradient descent method for the convexification to solve boundary value problems of quasi-linear PDEs and a coefficient inverse problem, preprint, arXiv: 2103.04159, 2021. |
[42] |
B. M. Levitan, Inverse Sturm–Liouville Problems, O. Efimov. VSP, Zeist, 1987. |
[43] |
M. Minoux, Mathematical Programming: Theory and Algorithms, John Wiley & Sons, Ltd., Chichester, 1986. |
[44] |
C. Montalto,
Stable determination of a simple metric, a covector field and a potential from the hyperbolic D irichlet-to- Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.
doi: 10.1080/03605302.2013.843429. |
[45] |
L. H. Nguyen, An inverse space-dependent source problem for hyperbolic equations and the L ipschitz-like convergence of the quasi-reversibility method, Inverse Problems, 35 (2019), 28pp.
doi: 10.1088/1361-6420/aafe8f. |
[46] |
L. H. Nguyen, Q. Li and M. V. Klibanov.,
A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media, Inverse Probl. Imaging, 13 (2009), 1067-1094.
doi: 10.3934/ipi.2019048. |
[47] |
N. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina and K. Kappra, Obstacle avolidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse Reconstruction (UWB SIRE) forward imaging radar, Proc. SPIE, (2007), 1–8. |
[48] |
V. G. Romanov, Inverse Problems of Mathematical Physics, De Gruyter, 1986. |
[49] |
J. A. Scales, M. L. Smith and T. L. Fischer,
Global optimization methods for multimodal inverse problems., J. Computational Physics, 103 (1992), 258-268.
|
[50] |
A. V. Smirnov, M. V. Klibanov and L. H. Nguyen,
Convexification for a 1D hyperbolic coefficient inverse problem with single measurement data, Inverse Probl. Imaging, 14 (2020), 913-938.
doi: 10.3934/ipi.2020042. |
[51] |
A. V. Smirnov, M. V. Klibanov, A. Sullivan and L. H. Nguyen, Convexifcation for an inverse problem for a 1d wave equation with experimental data, Inverse Problems, 36 (2020), 32pp.
doi: 10.1088/1361-6420/abac9a. |
[52] |
A. N. Tikhonov, A. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and its Applications, 328. Kluwer Academic Publishers Group, Dordrecht, 1995.
doi: 10.1007/978-94-015-8480-7. |
[53] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 75pp.
doi: 10.1088/0266-5611/25/12/123013. |






Target | computed |
computed |
True |
||
Bush | 1 | 6.76 | 1 | 6.76 | |
Wood stake | 1 | 2.22 | 1 | 2.22 | |
Metal box | 4 | 5.2 | |||
Metal cylinder | 4 | 4.7 | |||
Plastic cylinder | 4 | 0.37 |
Target | computed |
computed |
True |
||
Bush | 1 | 6.76 | 1 | 6.76 | |
Wood stake | 1 | 2.22 | 1 | 2.22 | |
Metal box | 4 | 5.2 | |||
Metal cylinder | 4 | 4.7 | |||
Plastic cylinder | 4 | 0.37 |
[1] |
Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems and Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032 |
[2] |
Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems and Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021 |
[3] |
Alexey Smirnov, Michael Klibanov, Loc Nguyen. Convexification for a 1D hyperbolic coefficient inverse problem with single measurement data. Inverse Problems and Imaging, 2020, 14 (5) : 913-938. doi: 10.3934/ipi.2020042 |
[4] |
Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641 |
[5] |
Loc H. Nguyen, Qitong Li, Michael V. Klibanov. A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media. Inverse Problems and Imaging, 2019, 13 (5) : 1067-1094. doi: 10.3934/ipi.2019048 |
[6] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[7] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[8] |
Alexander Blokhin, Alesya Ibragimova. 1D numerical simulation of the mep mathematical model in ballistic diode problem. Kinetic and Related Models, 2009, 2 (1) : 81-107. doi: 10.3934/krm.2009.2.81 |
[9] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[10] |
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1 |
[11] |
Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016 |
[12] |
Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091 |
[13] |
Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505 |
[14] |
Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 |
[15] |
Trygve K. Karper. Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 993-1023. doi: 10.3934/dcdss.2014.7.993 |
[16] |
Weijun Zhou. A globally convergent BFGS method for symmetric nonlinear equations. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1295-1303. doi: 10.3934/jimo.2021020 |
[17] |
Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201 |
[18] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[19] |
Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088 |
[20] |
Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839 |
2020 Impact Factor: 1.639
Tools
Article outline
Figures and Tables
[Back to Top]