• Previous Article
    Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data
  • IPI Home
  • This Issue
  • Next Article
    Small defects reconstruction in waveguides from multifrequency one-side scattering data
doi: 10.3934/ipi.2021069
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The interior inverse scattering problem for a two-layered cavity using the Bayesian method

1. 

School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun, 130022, China

2. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR, China

* Corresponding author: Weishi Yin

Received  June 2021 Revised  September 2021 Early access November 2021

In this paper, the Bayesian method is proposed for the interior inverse scattering problem to reconstruct the interface of a two-layered cavity. The scattered field is measured by the point sources located on a closed curve inside the interior interface. The well-posedness of the posterior distribution in the Bayesian framework is proved. The Markov Chain Monte Carlo algorithm is employed to explore the posterior density. Some numerical experiments are presented to demonstrate the effectiveness of the proposed method.

Citation: Yunwen Yin, Weishi Yin, Pinchao Meng, Hongyu Liu. The interior inverse scattering problem for a two-layered cavity using the Bayesian method. Inverse Problems & Imaging, doi: 10.3934/ipi.2021069
References:
[1]

H. AmmariE. Iakovleva and D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597-628.  doi: 10.1137/040610854.  Google Scholar

[2]

Z. Bai, H. Diao, H. Liu and Q. Meng, Effective medium theory for embedded obstacles in elasticity with applications to inverse problems, preprint, arXiv: 2102.09291. Google Scholar

[3]

T. Bui-Thanh and O. Ghattas, An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, SIAM/ASA J. Uncertain. Quantif., 2 (2014), 203-222.  doi: 10.1137/120894877.  Google Scholar

[4]

A. Carpio, S. Iakunin and G. Stadler, Bayesian approach to inverse scattering with topological priors, Inverse Problems, 36 (2020), 29pp. doi: 10.1088/1361-6420/abaa30.  Google Scholar

[5]

Y. T. ChowY. DengY. HeH. Liu and X. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14 (2021), 946-975.  doi: 10.1137/20M1388498.  Google Scholar

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^th$ edition, Applied Mathematical Sciences, 93, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[7]

Y. DengH. Liu and X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differential Equations, 267 (2019), 2192-2209.  doi: 10.1016/j.jde.2019.03.009.  Google Scholar

[8]

J. HuangZ. Deng and L. Xu, Bayesian approach for inverse interior scattering problems with limited aperture, Appl. Anal., 98 (2020), 2802-2826.  doi: 10.1080/00036811.2020.1781828.  Google Scholar

[9]

M. A. IglesiasY. Lu and A. Stuart, A Bayesian level set method for geometric inverse problems, Interfaces Free Bound., 18 (2016), 181-217.  doi: 10.4171/IFB/362.  Google Scholar

[10]

S. Lasanen, Non-Gaussian statistical inverse problems. Part Ⅱ: Posterior convergence for approximated unknowns, Inverse Probl. Imaging., 6 (2012), 267-287.  doi: 10.3934/ipi.2012.6.267.  Google Scholar

[11]

J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 28pp. doi: 10.1088/0266-5611/31/10/105006.  Google Scholar

[12]

J. LiH. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30 (2008), 1228-1250.  doi: 10.1137/060674247.  Google Scholar

[13]

J. LiH. Liu and J. Zou, Strengthened linear sampling method with a reference ball, SIAM J. Sci. Comput., 31 (2009/10), 4013-4040.  doi: 10.1137/080734170.  Google Scholar

[14]

Z. LiZ. Deng and J. Sun, Extended-sampling-Bayesian method for limited aperture inverse scattering problems, SIAM J. Imaging Sci., 13 (2020), 422-444.  doi: 10.1137/19M1270501.  Google Scholar

[15]

Z. Li, Y. Liu, J. Sun and L. Xu, Quality-Bayesian approach to inverse acoustic source problems with partial data, SIAM J. Sci. Comput., 43 (2021), A1062–A1080. doi: 10.1137/20M132345X.  Google Scholar

[16]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 20pp. doi: 10.1088/1361-6420/aa6770.  Google Scholar

[17]

H. LiuZ. ShangH. Sun and J. Zou, Singular perturbation of reduced wave equation and scattering from an embedded obstacle, J. Dynam. Differential Equations, 24 (2012), 803-821.  doi: 10.1007/s10884-012-9270-5.  Google Scholar

[18]

H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000.  doi: 10.4310/CMS.2015.v13.n4.a7.  Google Scholar

[19]

J. Liu, Y. Liu and J. Sun, An inverse medium problem using Stekloff eigenvalues and a Bayesian approach, Inverse Problems, 35 (2019), 20pp. doi: 10.1088/1361-6420/ab1be9.  Google Scholar

[20]

Y. Liu, Y. Guo and J. Sun, A deterministic-statistical approach to reconstruct moving sources using sparse partial data, Inverse Problems, 37 (2021), 18pp. doi: 10.1088/1361-6420/abf813.  Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[22]

H.-H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 17pp. doi: 10.1088/0266-5611/27/3/035005.  Google Scholar

[23]

H.-H. Qin and D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699-708.  doi: 10.1016/j.apnum.2010.10.011.  Google Scholar

[24]

A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.  doi: 10.1017/S0962492910000061.  Google Scholar

[25]

Y. SunY. Guo and F. Ma, The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., 95 (2016), 1327-1346.  doi: 10.1080/00036811.2015.1064519.  Google Scholar

[26]

Y. Wang, F. Ma and E. Zheng, Bayesian method for shape reconstruction in the inverse interior scattering problem, Math. Probl. Eng., 2015 (2015), 12pp. doi: 10.1155/2015/935294.  Google Scholar

[27]

W. YinJ. GeP. Meng and F. Qu, A neural network method for the inverse scattering problem of impenetrable cavities, Electron. Res. Arch., 28 (2020), 1123-1142.  doi: 10.3934/era.2020062.  Google Scholar

[28]

W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 18pp. doi: 10.1016/j.jcp.2020.109594.  Google Scholar

[29]

Y. Yin, W. Yin, P. Meng and H. Liu, On a hybrid approach for recovering multiple obstacles, in press, Commun. Comput. Phys., (2021). Google Scholar

[30]

F. ZengP. Suarez and J. Sun, A decomposition method for an interior inverse scattering problem, Inverse Probl. Imaging, 7 (2013), 291-303.  doi: 10.3934/ipi.2013.7.291.  Google Scholar

show all references

References:
[1]

H. AmmariE. Iakovleva and D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597-628.  doi: 10.1137/040610854.  Google Scholar

[2]

Z. Bai, H. Diao, H. Liu and Q. Meng, Effective medium theory for embedded obstacles in elasticity with applications to inverse problems, preprint, arXiv: 2102.09291. Google Scholar

[3]

T. Bui-Thanh and O. Ghattas, An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, SIAM/ASA J. Uncertain. Quantif., 2 (2014), 203-222.  doi: 10.1137/120894877.  Google Scholar

[4]

A. Carpio, S. Iakunin and G. Stadler, Bayesian approach to inverse scattering with topological priors, Inverse Problems, 36 (2020), 29pp. doi: 10.1088/1361-6420/abaa30.  Google Scholar

[5]

Y. T. ChowY. DengY. HeH. Liu and X. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14 (2021), 946-975.  doi: 10.1137/20M1388498.  Google Scholar

[6]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^th$ edition, Applied Mathematical Sciences, 93, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[7]

Y. DengH. Liu and X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differential Equations, 267 (2019), 2192-2209.  doi: 10.1016/j.jde.2019.03.009.  Google Scholar

[8]

J. HuangZ. Deng and L. Xu, Bayesian approach for inverse interior scattering problems with limited aperture, Appl. Anal., 98 (2020), 2802-2826.  doi: 10.1080/00036811.2020.1781828.  Google Scholar

[9]

M. A. IglesiasY. Lu and A. Stuart, A Bayesian level set method for geometric inverse problems, Interfaces Free Bound., 18 (2016), 181-217.  doi: 10.4171/IFB/362.  Google Scholar

[10]

S. Lasanen, Non-Gaussian statistical inverse problems. Part Ⅱ: Posterior convergence for approximated unknowns, Inverse Probl. Imaging., 6 (2012), 267-287.  doi: 10.3934/ipi.2012.6.267.  Google Scholar

[11]

J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 28pp. doi: 10.1088/0266-5611/31/10/105006.  Google Scholar

[12]

J. LiH. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30 (2008), 1228-1250.  doi: 10.1137/060674247.  Google Scholar

[13]

J. LiH. Liu and J. Zou, Strengthened linear sampling method with a reference ball, SIAM J. Sci. Comput., 31 (2009/10), 4013-4040.  doi: 10.1137/080734170.  Google Scholar

[14]

Z. LiZ. Deng and J. Sun, Extended-sampling-Bayesian method for limited aperture inverse scattering problems, SIAM J. Imaging Sci., 13 (2020), 422-444.  doi: 10.1137/19M1270501.  Google Scholar

[15]

Z. Li, Y. Liu, J. Sun and L. Xu, Quality-Bayesian approach to inverse acoustic source problems with partial data, SIAM J. Sci. Comput., 43 (2021), A1062–A1080. doi: 10.1137/20M132345X.  Google Scholar

[16]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 20pp. doi: 10.1088/1361-6420/aa6770.  Google Scholar

[17]

H. LiuZ. ShangH. Sun and J. Zou, Singular perturbation of reduced wave equation and scattering from an embedded obstacle, J. Dynam. Differential Equations, 24 (2012), 803-821.  doi: 10.1007/s10884-012-9270-5.  Google Scholar

[18]

H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000.  doi: 10.4310/CMS.2015.v13.n4.a7.  Google Scholar

[19]

J. Liu, Y. Liu and J. Sun, An inverse medium problem using Stekloff eigenvalues and a Bayesian approach, Inverse Problems, 35 (2019), 20pp. doi: 10.1088/1361-6420/ab1be9.  Google Scholar

[20]

Y. Liu, Y. Guo and J. Sun, A deterministic-statistical approach to reconstruct moving sources using sparse partial data, Inverse Problems, 37 (2021), 18pp. doi: 10.1088/1361-6420/abf813.  Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[22]

H.-H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 17pp. doi: 10.1088/0266-5611/27/3/035005.  Google Scholar

[23]

H.-H. Qin and D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699-708.  doi: 10.1016/j.apnum.2010.10.011.  Google Scholar

[24]

A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.  doi: 10.1017/S0962492910000061.  Google Scholar

[25]

Y. SunY. Guo and F. Ma, The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., 95 (2016), 1327-1346.  doi: 10.1080/00036811.2015.1064519.  Google Scholar

[26]

Y. Wang, F. Ma and E. Zheng, Bayesian method for shape reconstruction in the inverse interior scattering problem, Math. Probl. Eng., 2015 (2015), 12pp. doi: 10.1155/2015/935294.  Google Scholar

[27]

W. YinJ. GeP. Meng and F. Qu, A neural network method for the inverse scattering problem of impenetrable cavities, Electron. Res. Arch., 28 (2020), 1123-1142.  doi: 10.3934/era.2020062.  Google Scholar

[28]

W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 18pp. doi: 10.1016/j.jcp.2020.109594.  Google Scholar

[29]

Y. Yin, W. Yin, P. Meng and H. Liu, On a hybrid approach for recovering multiple obstacles, in press, Commun. Comput. Phys., (2021). Google Scholar

[30]

F. ZengP. Suarez and J. Sun, A decomposition method for an interior inverse scattering problem, Inverse Probl. Imaging, 7 (2013), 291-303.  doi: 10.3934/ipi.2013.7.291.  Google Scholar

Figure 1.  A schematic illustration of the two-layered cavity scattering problem
Figure 2.  Recoveries of the circle-shaped interface $ \Gamma_{0} $ by the Bayesian method with $ \sigma = 0.005,0.01,0.05 $, respectively
Figure 3.  The Markov chains of the coefficients $ q_{0},a_{1} $ and $ b_{1} $ with $ \sigma = 0.005,0.01,0.05 $, respectively
Figure 4.  Recoveries of the peanut-shaped interface $ \Gamma_{0} $ by the Bayesian method with $ \sigma = 0.005,0.01,0.05 $, respectively
Figure 5.  The Markov chains of the coefficients $ q_{0},a_{1} $ and $ b_{1} $ with $ \sigma = 0.005,0.01,0.05 $, respectively
Figure 6.  Recoveries of the peanut-shaped interface $ \Gamma_{0} $ by the Bayesian method with $ \rho = 0.3,0.2,0.1 $, respectively
Figure 7.  The Markov chains of the coefficients $ q_{0},a_{1} $ and $ b_{1} $ with $ \rho = 0.3,0.2,0.1 $, respectively
Figure 8.  Recoveries of the peanut-shaped interface $ \Gamma_{0} $ by the Bayesian method with $ \gamma_{1},\gamma_{2} $ and $ \gamma_{3} $, respectively
Figure 9.  The Markov chains of the coefficients $ q_{0},a_{1} $ and $ b_{1} $ with $ \gamma_{1},\gamma_{2} $ and $ \gamma_{3} $, respectively
[1]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[2]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[3]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[4]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[5]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[6]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[7]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems & Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[8]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[9]

Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014

[10]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[11]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[12]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[13]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems & Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335

[16]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[17]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[18]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[19]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[20]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

2020 Impact Factor: 1.639

Article outline

Figures and Tables

[Back to Top]