Advanced Search
Article Contents
Article Contents

Euler equations and trace properties of minimizers of a functional for motion compensated inpainting

  • *Corresponding author: Giuseppe Riey

    *Corresponding author: Giuseppe Riey

G.R. has been supported by the Italian PRIN Research Project 2017 "Qualitative and quantitative aspects of nonlinear PDE"

Abstract Full Text(HTML) Related Papers Cited by
  • We compute the Euler equations of a functional useful for simultaneous video inpainting and motion estimation, which was obtained in [17] as the relaxation of a modified version of the functional proposed in [16]. The functional is defined on vectorial functions of bounded variations, therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting in particular the conditions on the jump sets. Such conditions are expressed by means of traces of geometrically meaningful vector fields and characterized as pointwise limits of averages on cylinders with axes parallel to the unit normals to the jump sets.

    Mathematics Subject Classification: Primary: 49Q20, 49K20, 68T45; Secondary: 26B30.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Alberti, Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239-274.  doi: 10.1017/S030821050002566X.
    [2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press - Oxford, 2000.
    [3] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), 293-318.  doi: 10.1007/BF01781073.
    [4] G. Anzellotti, The Euler equation for functionals with linear growth, Trans. Amer. Math. Soc., 290 (1985), 483-501.  doi: 10.1090/S0002-9947-1985-0792808-4.
    [5] G. Anzellotti, On the minima of functionals with linear growth, Rend. Sem. Mat. Univ. Padova, 75 (1986), 91-110. 
    [6] G. Anzellotti, Traces of bounded vector-fields and the Divergence Theorem, Dipartimento di Matematica dell'Università di Trento, U.T.M., 131 (1983).
    [7] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, SIAM, 2006.
    [8] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2$^nd$ edition, Springer, New York, 2006.
    [9] T. Brox, A. Bruhn, N. Papenberg and J. Weickert, High accuracy optical flow estimation based on a theory for warping, Proceedings of the 8th European Conference on Computer Vision, (eds. T. Pajdla and J. Matas), 3024 (2004), 25–36. doi: 10.1007/978-3-540-24673-2_3.
    [10] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics Series, Vol. 207, Longman Scientific & Technical, UK, 1989.
    [11] T. F. ChanG. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.  doi: 10.1137/S1064827596299767.
    [12] C. Goffman and J. Serrin, Sublinear functions of measures and variationals integrals, Duke Math. J., 31 (1964), 159-178. 
    [13] B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.  doi: 10.1016/0004-3702(81)90024-2.
    [14] S. H. KellerF. Lauze and M. Nielsen, Deintarlacing using variational methods, IEEE Trans. Image Proc., 17 (2008), 2015-2028.  doi: 10.1109/TIP.2008.2003394.
    [15] S. H. KellerF. Lauze and M. Nielsen, Video super-resolution using simultaneous motion and intensity calculations, IEEE Trans. Image Proc., 20 (2011), 1870-1884.  doi: 10.1109/TIP.2011.2106793.
    [16] F. Lauze and M. Nielsen, A Variational algorithm for motion compensated inpainting, British Machine Vision Conference, (eds. S. Barman, A. Hoppe, T. Ellis), 2 (2004), 777–787. doi: 10.5244/C.18.80.
    [17] R. March and G. Riey, Analysis of a variational model for motion compensated inpainting, Inverse Probl. Imaging, 11 (2017), 997-1025.  doi: 10.3934/ipi.2017046.
    [18] R. March and G. Riey, Properties of a variational model for video inpainting, Networks and Spatial Economics, 2019 doi: 10.1007/s11067-019-09459-4.
    [19] S. UrasF. GirosiA. Verri and V. Torre, A computational approach to motion perception, Biol. Cybern., 60 (1988), 79-87.  doi: 10.1007/BF00202895.
  • 加载中

Article Metrics

HTML views(987) PDF downloads(324) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint