• Previous Article
    Variational source conditions for inverse Robin and flux problems by partial measurements
  • IPI Home
  • This Issue
  • Next Article
    Euler equations and trace properties of minimizers of a functional for motion compensated inpainting
doi: 10.3934/ipi.2021075
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Analytical reconstruction formula with efficient implementation for a modality of Compton scattering tomography with translational geometry

1. 

Laboratoire de Physique Théorique et Modélisation (UMR 8089), CY Cergy Paris Université, CNRS, Pontoise, 95302, France

2. 

Equipes Traitement de l'Information et Systèmes (UMR 8051), CY Cergy Paris Université, ENSEA, CNRS, Pontoise, 95302, France

3. 

Laboratoire de Mathématiques de Versailles (UMR 8100), Université de Versailles Saint-Quentin, CNRS, Versailles, 78035, France

4. 

Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Centro de Matemática Aplicada (CEDEMA), San Martín, 1650, Argentina

*Corresponding author: Cécilia Tarpau

Received  June 2021 Revised  November 2021 Early access December 2021

Fund Project: C. Tarpau research work is supported by grants from Région Île-de-France (in Mathematics and Innovation) 2018-2021 and LabEx MME-DII (Modèles Mathématiques et Économiques de la Dynamique, de l'Incertitude et des Interactions) (No. ANR-11-LBX-0023-01). J. Cebeiro research work is supported by a postdoctoral grant from the University of San Martín. He is also partially supported by SOARD-AFOSR (grant number FA9550-18-1-0523)

In this paper, we address an alternative formulation for the exact inverse formula of the Radon transform on circle arcs arising in a modality of Compton Scattering Tomography in translational geometry proposed by Webber and Miller (Inverse Problems (36)2, 025007, 2020). The original study proposes a first method of reconstruction, using the theory of Volterra integral equations. The numerical realization of such a type of inverse formula may exhibit some difficulties, mainly due to stability issues. Here, we provide a suitable formulation for exact inversion that can be straightforwardly implemented in the Fourier domain. Simulations are carried out to illustrate the efficiency of the proposed reconstruction algorithm.

Citation: Cécilia Tarpau, Javier Cebeiro, Geneviève Rollet, Maï K. Nguyen, Laurent Dumas. Analytical reconstruction formula with efficient implementation for a modality of Compton scattering tomography with translational geometry. Inverse Problems & Imaging, doi: 10.3934/ipi.2021075
References:
[1]

I. Ayad, C. Tarpau, M. K. Nguyen and N. S. Vu, Deep morphological network-based artifact suppression for limited-angle tomography, in Proceedings of the 25th International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV'21), Las Vegas, United States, 2021. Google Scholar

[2]

R. N. Bracewell, Numerical transforms, Science, 248 (1990), 697-704.  doi: 10.1126/science.248.4956.697.  Google Scholar

[3]

J. CebeiroM. K. NguyenM. Morvidone and A. Noumowé, New "improved" Compton scatter tomography modality for investigative imaging of one-sided large objects, Inverse Problems in Science and Engineering, 25 (2017), 1676-1696.  doi: 10.1080/17415977.2017.1281920.  Google Scholar

[4]

J. Cebeiro, M. K. Nguyen, M. Morvidone and C. Tarpau, An interior Compton Scatter Tomography, in 25th IEEE Nuclear Science Symposium and Medical Imaging Conference 2018 (IEEE NSS/MIC'18), Sydney, Australia, 2018. doi: 10.1109/NSSMIC.2018.8824374.  Google Scholar

[5]

J. CebeiroC. TarpauM. A. MorvidoneD. Rubio and M. K. Nguyen, On a three dimensional Compton scattering tomography system with fixed source, Inverse Problems, 37 (2021), 054001.  doi: 10.1088/1361-6420/abf0f0.  Google Scholar

[6]

R. Clarke and G. Van Dyk, Compton-scattered gamma rays in diagnostic radiography, in Medical Radioisotope Scintigraphy. Ⅵ Proceedings of a Symposium on Medical Radioisotope Scintigraphy, 1969. Google Scholar

[7]

A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 34 (1963), 2722-2727.   Google Scholar

[8]

P. E. Cruvinel and F. A. Balogun, Compton scattering tomography for agricultural measurements, Engenharia Agricola, 26 (2006), 151-160.  doi: 10.1590/S0100-69162006000100017.  Google Scholar

[9]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Company, New York, 1954.  Google Scholar

[10]

F. Farmer and M. P. Collins, A new approach to the determination of anatomical cross-sections of the body by compton scattering of gamma-rays, Physics in Medicine & Biology, 16 (1971), 577.  doi: 10.1088/0031-9155/16/4/001.  Google Scholar

[11]

S. GautamF. HopkinsR. Klinksiek and I. Morgan, Compton interaction tomography I. Feasibility studies for applications in earthquake engineering, IEEE Transactions on Nuclear Science, 30 (1983), 1680-1684.  doi: 10.1109/TNS.1983.4332614.  Google Scholar

[12]

I. S. Gradshteyn, I. M. Ryzhik, D. Zwillinger and V. Moll, Table of Integrals, Series, and Products, 8th ed. Academic Press, Amsterdam, 2014. Available from: https://cds.cern.ch/record/1702455. Google Scholar

[13]

G. Harding and E. Harding, Compton scatter imaging: A tool for historical exploration, Applied Radiation and Isotopes, 68 (2010), 993-1005.  doi: 10.1016/j.apradiso.2010.01.035.  Google Scholar

[14]

E. M. HusseinM. Desrosiers and E. J. Waller, On the use of radiation scattering for the detection of landmines, Radiation Physics and Chemistry, 73 (2005), 7-19.  doi: 10.1016/j.radphyschem.2004.07.006.  Google Scholar

[15]

K. C. JonesG. RedlerA. TempletonD. BernardJ. V. Turian and J. C. Chu, Characterization of Compton-scatter imaging with an analytical simulation method, Physics in Medicine & Biology, 63 (2018), 025016.  doi: 10.1016/j.tcs.2018.05.007.  Google Scholar

[16]

P. Lale, The examination of internal tissues, using gamma-ray scatter with a possible extension to megavoltage radiography, Physics in Medicine & Biology, 4 (1959), 159.  doi: 10.1088/0031-9155/4/2/305.  Google Scholar

[17]

M. K. Nguyen and T. T. Truong, Imagerie par rayonnement gamma diffusé., Hermès Science, 2006. Google Scholar

[18]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc Radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 065005.  doi: 10.1088/0266-5611/26/9/099802.  Google Scholar

[19]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.  Google Scholar

[20]

P. G. PradoM. K. NguyenL. Dumas and S. X. Cohen, Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality, Journal of Electronic Imaging, 26 (2017), 011026.   Google Scholar

[21]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Akad. Wiss., 69 (1917), 262-277.  doi: 10.1090/psapm/027/692055.  Google Scholar

[22]

G. RedlerK. C. JonesA. TempletonD. BernardJ. Turian and J. C. Chu, Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy, Medical Physics, 45 (2018), 1233-1240.  doi: 10.1002/mp.12755.  Google Scholar

[23]

G. Rigaud, Compton scattering tomography: feature reconstruction and rotation-free modality, SIAM Journal on Imaging Sciences, 10 (2017), 2217-2249.  doi: 10.1137/17M1120105.  Google Scholar

[24]

G. Rigaud and B. N. Hahn, 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms, Inverse Problems, 34 (2018), 075004.  doi: 10.1088/1361-6420/aabf0b.  Google Scholar

[25]

G. RigaudM. K. Nguyen and A. K. Louis, Novel numerical inversions of two circular-arc Radon transforms in Compton scattering tomography, Inverse Problems in Science and Engineering, 20 (2012), 809-839.  doi: 10.1080/17415977.2011.653008.  Google Scholar

[26]

G. RigaudR. RégnierM. K. Nguyen and H. Zaidi, Combined modalities of Compton scattering tomography, IEEE Transactions on Nuclear Science, 60 (2013), 1570-1577.  doi: 10.1109/TNS.2013.2252022.  Google Scholar

[27]

C. TarpauJ. CebeiroM. K. NguyenG. Rollet and M. A. Morvidone, Analytic inversion of a Radon transform on double circular arcs with applications in Compton Scattering Tomography, IEEE Transactions on Computational Imaging, 6 (2020), 958-967.  doi: 10.1109/TCI.2020.2999672.  Google Scholar

[28]

C. Tarpau and M. K. Nguyen, Compton scattering imaging system with two scanning configurations, Journal of Electronic Imaging, 29 (2020), 130.  doi: 10.1117/1.JEI.29.1.013005.  Google Scholar

[29]

C. Tarpau, J. Cebeiro, M. Morvidone and M. K. Nguyen, A new concept of Compton Scattering tomography and the development of the corresponding circular Radon transform, IEEE Transactions on Radiation and Plasma Medical Sciences, 2019. doi: 10.1109/TRPMS.2019.2943555.  Google Scholar

[30]

T. T. Truong, Function reconstruction from reflection symmetric radon data, Symmetry, 12 (2020). doi: 10.3390/sym12060956.  Google Scholar

[31]

T. Truong and M. K. Nguyen, Compton scatter tomography in annular domains, Inverse Problems, 35 (2019), 054005.  doi: 10.1088/1361-6420/ab0b76.  Google Scholar

[32]

T. T. Truong and M. K. Nguyen, Recent developments on Compton scatter tomography: Theory and numerical simulations, in Numerical Simulation-From Theory to Industry, IntechOpen, 2012. Google Scholar

[33]

T. T. Truong and M. K. Nguyen, Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality, Inverse Problems, 27 (2011), 125001.  doi: 10.1088/0266-5611/27/12/125001.  Google Scholar

[34]

J. Webber and E. L. Miller, Compton scattering tomography in translational geometries, Inverse Problems, 36 (2020), 025007.  doi: 10.1088/1361-6420/ab4a32.  Google Scholar

[35]

J. W. Webber and W. R. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), 084001.  doi: 10.1088/1361-6420/aac51e.  Google Scholar

[36]

J. W. Webber and S. Holman, Microlocal analysis of a spindle transform, Inverse Problems and Imaging, 13 (2019), 231-261.  doi: 10.3934/ipi.2019013.  Google Scholar

[37]

J. W. Webber and E. T. Quinto, Microlocal analysis of a Compton tomography problem, SIAM Journal on Imaging Sciences, 13 (2020), 746-774.  doi: 10.1137/19M1251035.  Google Scholar

[38]

J. W. Webber, E. T. Quinto and E. L. Miller, A joint reconstruction and lambda tomography regularization technique for energy-resolved x-ray imaging, 36 (2020), 074002. doi: 10.1088/1361-6420/ab8f82.  Google Scholar

show all references

References:
[1]

I. Ayad, C. Tarpau, M. K. Nguyen and N. S. Vu, Deep morphological network-based artifact suppression for limited-angle tomography, in Proceedings of the 25th International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV'21), Las Vegas, United States, 2021. Google Scholar

[2]

R. N. Bracewell, Numerical transforms, Science, 248 (1990), 697-704.  doi: 10.1126/science.248.4956.697.  Google Scholar

[3]

J. CebeiroM. K. NguyenM. Morvidone and A. Noumowé, New "improved" Compton scatter tomography modality for investigative imaging of one-sided large objects, Inverse Problems in Science and Engineering, 25 (2017), 1676-1696.  doi: 10.1080/17415977.2017.1281920.  Google Scholar

[4]

J. Cebeiro, M. K. Nguyen, M. Morvidone and C. Tarpau, An interior Compton Scatter Tomography, in 25th IEEE Nuclear Science Symposium and Medical Imaging Conference 2018 (IEEE NSS/MIC'18), Sydney, Australia, 2018. doi: 10.1109/NSSMIC.2018.8824374.  Google Scholar

[5]

J. CebeiroC. TarpauM. A. MorvidoneD. Rubio and M. K. Nguyen, On a three dimensional Compton scattering tomography system with fixed source, Inverse Problems, 37 (2021), 054001.  doi: 10.1088/1361-6420/abf0f0.  Google Scholar

[6]

R. Clarke and G. Van Dyk, Compton-scattered gamma rays in diagnostic radiography, in Medical Radioisotope Scintigraphy. Ⅵ Proceedings of a Symposium on Medical Radioisotope Scintigraphy, 1969. Google Scholar

[7]

A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 34 (1963), 2722-2727.   Google Scholar

[8]

P. E. Cruvinel and F. A. Balogun, Compton scattering tomography for agricultural measurements, Engenharia Agricola, 26 (2006), 151-160.  doi: 10.1590/S0100-69162006000100017.  Google Scholar

[9]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Company, New York, 1954.  Google Scholar

[10]

F. Farmer and M. P. Collins, A new approach to the determination of anatomical cross-sections of the body by compton scattering of gamma-rays, Physics in Medicine & Biology, 16 (1971), 577.  doi: 10.1088/0031-9155/16/4/001.  Google Scholar

[11]

S. GautamF. HopkinsR. Klinksiek and I. Morgan, Compton interaction tomography I. Feasibility studies for applications in earthquake engineering, IEEE Transactions on Nuclear Science, 30 (1983), 1680-1684.  doi: 10.1109/TNS.1983.4332614.  Google Scholar

[12]

I. S. Gradshteyn, I. M. Ryzhik, D. Zwillinger and V. Moll, Table of Integrals, Series, and Products, 8th ed. Academic Press, Amsterdam, 2014. Available from: https://cds.cern.ch/record/1702455. Google Scholar

[13]

G. Harding and E. Harding, Compton scatter imaging: A tool for historical exploration, Applied Radiation and Isotopes, 68 (2010), 993-1005.  doi: 10.1016/j.apradiso.2010.01.035.  Google Scholar

[14]

E. M. HusseinM. Desrosiers and E. J. Waller, On the use of radiation scattering for the detection of landmines, Radiation Physics and Chemistry, 73 (2005), 7-19.  doi: 10.1016/j.radphyschem.2004.07.006.  Google Scholar

[15]

K. C. JonesG. RedlerA. TempletonD. BernardJ. V. Turian and J. C. Chu, Characterization of Compton-scatter imaging with an analytical simulation method, Physics in Medicine & Biology, 63 (2018), 025016.  doi: 10.1016/j.tcs.2018.05.007.  Google Scholar

[16]

P. Lale, The examination of internal tissues, using gamma-ray scatter with a possible extension to megavoltage radiography, Physics in Medicine & Biology, 4 (1959), 159.  doi: 10.1088/0031-9155/4/2/305.  Google Scholar

[17]

M. K. Nguyen and T. T. Truong, Imagerie par rayonnement gamma diffusé., Hermès Science, 2006. Google Scholar

[18]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc Radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 065005.  doi: 10.1088/0266-5611/26/9/099802.  Google Scholar

[19]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.  Google Scholar

[20]

P. G. PradoM. K. NguyenL. Dumas and S. X. Cohen, Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality, Journal of Electronic Imaging, 26 (2017), 011026.   Google Scholar

[21]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Akad. Wiss., 69 (1917), 262-277.  doi: 10.1090/psapm/027/692055.  Google Scholar

[22]

G. RedlerK. C. JonesA. TempletonD. BernardJ. Turian and J. C. Chu, Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy, Medical Physics, 45 (2018), 1233-1240.  doi: 10.1002/mp.12755.  Google Scholar

[23]

G. Rigaud, Compton scattering tomography: feature reconstruction and rotation-free modality, SIAM Journal on Imaging Sciences, 10 (2017), 2217-2249.  doi: 10.1137/17M1120105.  Google Scholar

[24]

G. Rigaud and B. N. Hahn, 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms, Inverse Problems, 34 (2018), 075004.  doi: 10.1088/1361-6420/aabf0b.  Google Scholar

[25]

G. RigaudM. K. Nguyen and A. K. Louis, Novel numerical inversions of two circular-arc Radon transforms in Compton scattering tomography, Inverse Problems in Science and Engineering, 20 (2012), 809-839.  doi: 10.1080/17415977.2011.653008.  Google Scholar

[26]

G. RigaudR. RégnierM. K. Nguyen and H. Zaidi, Combined modalities of Compton scattering tomography, IEEE Transactions on Nuclear Science, 60 (2013), 1570-1577.  doi: 10.1109/TNS.2013.2252022.  Google Scholar

[27]

C. TarpauJ. CebeiroM. K. NguyenG. Rollet and M. A. Morvidone, Analytic inversion of a Radon transform on double circular arcs with applications in Compton Scattering Tomography, IEEE Transactions on Computational Imaging, 6 (2020), 958-967.  doi: 10.1109/TCI.2020.2999672.  Google Scholar

[28]

C. Tarpau and M. K. Nguyen, Compton scattering imaging system with two scanning configurations, Journal of Electronic Imaging, 29 (2020), 130.  doi: 10.1117/1.JEI.29.1.013005.  Google Scholar

[29]

C. Tarpau, J. Cebeiro, M. Morvidone and M. K. Nguyen, A new concept of Compton Scattering tomography and the development of the corresponding circular Radon transform, IEEE Transactions on Radiation and Plasma Medical Sciences, 2019. doi: 10.1109/TRPMS.2019.2943555.  Google Scholar

[30]

T. T. Truong, Function reconstruction from reflection symmetric radon data, Symmetry, 12 (2020). doi: 10.3390/sym12060956.  Google Scholar

[31]

T. Truong and M. K. Nguyen, Compton scatter tomography in annular domains, Inverse Problems, 35 (2019), 054005.  doi: 10.1088/1361-6420/ab0b76.  Google Scholar

[32]

T. T. Truong and M. K. Nguyen, Recent developments on Compton scatter tomography: Theory and numerical simulations, in Numerical Simulation-From Theory to Industry, IntechOpen, 2012. Google Scholar

[33]

T. T. Truong and M. K. Nguyen, Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality, Inverse Problems, 27 (2011), 125001.  doi: 10.1088/0266-5611/27/12/125001.  Google Scholar

[34]

J. Webber and E. L. Miller, Compton scattering tomography in translational geometries, Inverse Problems, 36 (2020), 025007.  doi: 10.1088/1361-6420/ab4a32.  Google Scholar

[35]

J. W. Webber and W. R. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), 084001.  doi: 10.1088/1361-6420/aac51e.  Google Scholar

[36]

J. W. Webber and S. Holman, Microlocal analysis of a spindle transform, Inverse Problems and Imaging, 13 (2019), 231-261.  doi: 10.3934/ipi.2019013.  Google Scholar

[37]

J. W. Webber and E. T. Quinto, Microlocal analysis of a Compton tomography problem, SIAM Journal on Imaging Sciences, 13 (2020), 746-774.  doi: 10.1137/19M1251035.  Google Scholar

[38]

J. W. Webber, E. T. Quinto and E. L. Miller, A joint reconstruction and lambda tomography regularization technique for energy-resolved x-ray imaging, 36 (2020), 074002. doi: 10.1088/1361-6420/ab8f82.  Google Scholar

Figure 1.  General functioning principle of a CST system. Photons are emitted by source $ S $, interact at sites $ M $, and are recorded at site $ D $. When a photon is detected carrying an energy $ E(\omega_1) $ (resp. $ E(\omega_2) $), the possible interaction sites lie on the upper (resp. lower) circle arc which subtends the angle $ (\pi-\omega_1) $ (resp. $ (\pi-\omega_2) $)
Figure 2.  Previous proposed CST modalities. (A): Fixed source and detectors placed on a line. (B): Rotating pair source-detector diametrically opposed. (C): Rotating pair source detector. (D): Fixed source and detectors placed on a ring. (E): Detector rotating around a fixed source. (F) Source-detector translating simultaneously along two parallel lines. In all figures: The source $ S $ is represented by a red point. The detector(s) $ D $ is (are) represented by blue point(s). The $ M $, $ M_i $ or $ M'_i $ in black, are running points and examples of scattering site. An example of trajectory for a photon whose scattering site is $ M $ is shown in purple. The corresponding scattering angle is denoted $ \omega $. The object to scan is represented in grey. The red continuous curves are the examples of scanning circles arcs. For (C), (E) and (F), the dashed circles (resp. lines) represents the circular (resp. linear) paths on which move the sensors
34]. The source $ S $ and the detector are respectively represented by a red and a blue point. To make the difference between the four half-arcs, $ S_1, S_3 $ and $ S_2, S_4 $ are respectively depicted in red and green. $ \Omega_{1, 2, 3, 4} $ denote the centres of the circles supporting the half-arcs $ S_{1, 2, 3, 4} $. The point $ M $ is an example of a scattering site">Figure 3.  Setup and parameterization of the CST modality proposed in [34]. The source $ S $ and the detector are respectively represented by a red and a blue point. To make the difference between the four half-arcs, $ S_1, S_3 $ and $ S_2, S_4 $ are respectively depicted in red and green. $ \Omega_{1, 2, 3, 4} $ denote the centres of the circles supporting the half-arcs $ S_{1, 2, 3, 4} $. The point $ M $ is an example of a scattering site
Figure 4.  (A) Original object: Derenzo phantom. (B) Corresponding acquired data for $ N_{SD} = 2048 $ and $ N_r = 1024 $. A distance of one pixel is left between the upper part of the image and the detector path ($ \delta = 1 $, see 5.2.1)
Figure 5.  Reconstruction results of the Derenzo phantom 4a for (A) $ \delta = 1 $ (NMSE = 0.0112), (B) $ \delta = 26 $ (NMSE = 0.0074) and (C) $ \delta = 51 $ (NMSE = 0.0061) pixel(s)
Figure 6.  Evaluation of the number of source-detector positions on reconstruction quality. First row: Reconstruction results of the Derenzo phantom 4a for (A) $ x_{0, max} = 2N $ (NMSE = 0.0084), (B) $ 3N $ (NMSE = 0.0049) and (C) $ 4N $ NMSE = 0.0061) where $ \Delta_{x_0} = 1 $. Second row: Reconstruction results for (D) $ 0.5 $ (NMSE = 0.0046), (E) $ 1 $ (NMSE = 0.0049) and (F) $ 0.5 $ NMSE = 0.0049) detector per unit length and $ x_{0, max} = 3N $ remains constant
Figure 7.  Evaluation of the number of scanning circles on reconstruction quality. First row: Reconstruction results of the Derenzo phantom 4a for (A) $ r_{max} = 2N $ (NMSE = 0.0058), (B) $ 3N $ (NMSE = 0.0040) and (C) $ 4N $ (NMSE = 0.0049) where $ \Delta_{r} = 1 $. Second row: Reconstruction results for (D) $ \Delta_{r} = 1 $ (NMSE = 0.0040), (E) $ 2 $ (NMSE = 0.0043) and (F) $ 4 $ (NMSE = 0.0043) detector per unit length and $ r_{max} = 3N $ remains constant
[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[2]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[3]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[4]

Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022

[5]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[6]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[7]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[8]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[9]

Ming Yan, Alex A. T. Bui, Jason Cong, Luminita A. Vese. General convergent expectation maximization (EM)-type algorithms for image reconstruction. Inverse Problems & Imaging, 2013, 7 (3) : 1007-1029. doi: 10.3934/ipi.2013.7.1007

[10]

Florian Bossmann, Jianwei Ma. Enhanced image approximation using shifted rank-1 reconstruction. Inverse Problems & Imaging, 2020, 14 (2) : 267-290. doi: 10.3934/ipi.2020012

[11]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[12]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[13]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[14]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[15]

Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223

[16]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[17]

James W. Webber, Eric L. Miller. Bragg scattering tomography. Inverse Problems & Imaging, 2021, 15 (4) : 683-721. doi: 10.3934/ipi.2021010

[18]

Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems & Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042

[19]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[20]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

2020 Impact Factor: 1.639

Article outline

Figures and Tables

[Back to Top]