• Previous Article
    Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data
  • IPI Home
  • This Issue
  • Next Article
    The interior inverse scattering problem for a two-layered cavity using the Bayesian method
doi: 10.3934/ipi.2021076
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas

1. 

TIFR Centre for Applicable Mathematics, Sharada Nagar, Chikkabommasandra, Yelahanka New Town, Bangalore, India

2. 

Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russia

Dedicated to the memory of our teacher Yuri Grigor'evich Reshetnyak

Received  June 2021 Revised  October 2021 Early access December 2021

Fund Project: The first author was supported by India SERB Matrics Grant MTR/2017/000837, and the second author was supported by RFBR, Grant 20-51-15004 (joint French – Russian grant)

For an integer $ r\ge0 $, we prove the $ r^{\mathrm{th}} $ order Reshetnyak formula for the ray transform of rank $ m $ symmetric tensor fields on $ {{\mathbb R}}^n $. Roughly speaking, for a tensor field $ f $, the order $ r $ refers to $ L^2 $-integrability of higher order derivatives of the Fourier transform $ \widehat f $ over spheres centered at the origin. Certain differential operators $ A^{(m,r,l)}\ (0\le l\le r) $ on the sphere $ {{\mathbb S}}^{n-1} $ are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any $ r $ although the volume of calculations grows fast with $ r $. The algorithm is realized for small values of $ r $ and Reshetnyak formulas of orders $ 0,1,2 $ are presented in an explicit form.

Citation: Venkateswaran P. Krishnan, Vladimir A. Sharafutdinov. Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas. Inverse Problems & Imaging, doi: 10.3934/ipi.2021076
References:
[1]

I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York-London, (1966).  Google Scholar

[2]

S. Helgason, The Radon Transform, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4757-1463-0.  Google Scholar

[3]

F. John, The ultrahyperbolic differential equation with four independent variables, Duke Math. J., 2 (1938), 300-322.  doi: 10.1215/S0012-7094-38-00423-5.  Google Scholar

[4]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York, London, Sydney, 1963.  Google Scholar

[5]

V. P. KrishnanR. MannaS. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, Inverse Problems and Imaging, 13 (2019), 679-701.  doi: 10.3934/ipi.2019031.  Google Scholar

[6]

R. Seeley, Complex powers of an elliptic operator, In Proceeding of Symposia in Pure Mathematics, Vol. X, Singular Integrals, American Mathematical Society, Providence, R.I., 1967,288–307.  Google Scholar

[7]

V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht (1994). doi: 10.1515/9783110900095.  Google Scholar

[8]

V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20 pp. doi: 10.1088/1361-6420/33/2/025002.  Google Scholar

[9]

V. A. Sharafutdinov, X-ray transform on Sobolev spaces, Inverse Problems, 37 (2021), 015007, 25 pp. doi: 10.1088/1361-6420/abb5e0.  Google Scholar

[10]

V. A. Sharafutdinov, Radon transform on Sobolev spaces, Siberian Math. J., 62 (2021), 560-580.   Google Scholar

show all references

References:
[1]

I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York-London, (1966).  Google Scholar

[2]

S. Helgason, The Radon Transform, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4757-1463-0.  Google Scholar

[3]

F. John, The ultrahyperbolic differential equation with four independent variables, Duke Math. J., 2 (1938), 300-322.  doi: 10.1215/S0012-7094-38-00423-5.  Google Scholar

[4]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York, London, Sydney, 1963.  Google Scholar

[5]

V. P. KrishnanR. MannaS. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, Inverse Problems and Imaging, 13 (2019), 679-701.  doi: 10.3934/ipi.2019031.  Google Scholar

[6]

R. Seeley, Complex powers of an elliptic operator, In Proceeding of Symposia in Pure Mathematics, Vol. X, Singular Integrals, American Mathematical Society, Providence, R.I., 1967,288–307.  Google Scholar

[7]

V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht (1994). doi: 10.1515/9783110900095.  Google Scholar

[8]

V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20 pp. doi: 10.1088/1361-6420/33/2/025002.  Google Scholar

[9]

V. A. Sharafutdinov, X-ray transform on Sobolev spaces, Inverse Problems, 37 (2021), 015007, 25 pp. doi: 10.1088/1361-6420/abb5e0.  Google Scholar

[10]

V. A. Sharafutdinov, Radon transform on Sobolev spaces, Siberian Math. J., 62 (2021), 560-580.   Google Scholar

[1]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[2]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems & Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[3]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[4]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[5]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[6]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[7]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[8]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[9]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[10]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[11]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[12]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[13]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[14]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[15]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[16]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems & Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047

[17]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

[18]

Wei-Kang Xun, Shou-Fu Tian, Tian-Tian Zhang. Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021259

[19]

Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure & Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178

[20]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

2020 Impact Factor: 1.639

Article outline

[Back to Top]