
-
Previous Article
An iterative scheme for imaging acoustic obstacle from phaseless total-field data
- IPI Home
- This Issue
-
Next Article
Direct regularized reconstruction for the three-dimensional Calderón problem
A new anisotropic fourth-order diffusion equation model based on image features for image denoising
School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China |
Image denoising has always been a challenging task. For performing this task, one of the most effective methods is based on variational PDE. Inspired by the LLT model, we first propose a new adaptive LLT model by adding a weighted function, and then we propose a class of fourth-order diffusion equations based on the new functional. Owing to the adaptive function, the new functional is better than the LLT model and other fourth-order models in terms of edge preservation. While generalizing the Euler-Lagrange equation of the new functional, we discuss a new fourth-order diffusion framework for image denoising. Different from those of other fourth-order diffusion models, the new diffusion coefficients depend on the first-order and second-order derivatives, which can preserve edges and smooth images, respectively. Regarding numerical implementations, we first design an explicit scheme for the proposed model. However, fourth-order diffusion equations require strict stability conditions, and the number of iterations needed is considerable. Consequently, we apply the fast explicit diffusion algorithm (FED) to the explicit scheme to reduce the time consumption of the proposed approach. Furthermore, the additive operator splitting (AOS) scheme is applied for the numerical implementation, and it is the most efficient among all of our algorithms. Finally, compared with other models, the new model exhibits superior effectiveness and efficiency.
References:
[1] |
A. Bertozzi and J. Greer,
Low-curvature image simplifiers: Global regularity of smooth solutions and Laplacian limiting schemes, Commun. Pur. Appl. Math., 57 (2004), 764-790.
doi: 10.1002/cpa.20019. |
[2] |
A. Bertozzi, J. Greer, S. Osher and K. Vixie,
Nonlinear regularizations of TV based PDEs for image processing, Contemp. Math, 371 (2005), 29-40.
doi: 10.1090/conm/371/06846. |
[3] |
C. Brito-Loeza and K. Chen,
Multigrid algorithm for high order denoising, SIAM J. Imaging Sci., 3 (2010), 363-389.
doi: 10.1137/080737903. |
[4] |
D. Calvetti and L. Reichel,
Adaptive Richardson iteration based on Leja points, J. Comput. Appl. Math., 71 (1996), 267-286.
doi: 10.1016/0377-0427(96)87162-7. |
[5] |
F. Catté, P.-L. Lions, J.-M. Morel and T. Coll,
Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193.
doi: 10.1137/0729012. |
[6] |
T. Chan, A. Marquina and P. Mulet,
High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.
doi: 10.1137/S1064827598344169. |
[7] |
P. Chen and Y. Wang, Fourth-order partial differential equations for image inpainting, In 2008 International Conference on Audio, Language and Image Processing, (2008), 1713–1717. |
[8] |
P. Chen and Y. Wang,
A new fourth-order equation model for image inpainting, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 5 (2009), 320-324.
doi: 10.1109/FSKD.2009.201. |
[9] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian,
Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238. |
[10] |
S. Durand, J. Fadili and M. Nikolova,
Multiplicative noise removal using L1 fidelity on frame coefficients, J. Math. Imaging Vision, 36 (2010), 201-226.
doi: 10.1007/s10851-009-0180-z. |
[11] |
S. Grewenig, J. Weickert and A. Bruhn,
From box filtering to fast explicit diffusion, Pattern Recognit., 6376 (2010), 533-542.
doi: 10.1007/978-3-642-15986-2_54. |
[12] |
M. R. Hajiaboli,
A self-governing hybrid model for noise removal, Pacific-Rim Symposium on Image and Video Technology, 5414 (2009), 295-305.
doi: 10.1007/978-3-540-92957-4_26. |
[13] |
M. R. Hajiaboli,
An anisotropic fourth-order diffusion filter for image noise removal, Int. J. Comput. Vis., 92 (2011), 177-191.
doi: 10.1007/s11263-010-0330-1. |
[14] |
S. Kim and H. Lim,
Fourth-order partial differential equations for effective image denoising, Electron. J. Differ. Equ. Conf., 17 (2009), 107-121.
|
[15] |
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980. |
[16] |
F. Li, C. Shen, J. Fan and C. Shen,
Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18 (2007), 322-330.
doi: 10.1016/j.jvcir.2007.04.005. |
[17] |
P. Li, S.-J. Li, Z.-A. Yao and Z.-J. Zhang,
Two anisotropic fourth-order partial differential equations for image inpainting, IET Image Process., 7 (2013), 260-269.
doi: 10.1049/iet-ipr.2012.0592. |
[18] |
P. Li, Y. Zou and Z. Yao,
Fourth-order anisotropic diffusion equations for image zooming, Journal of Image and Graphics, 18 (2013), 1261-1269.
|
[19] |
S. Li and X. Yang,
Novel image inpainting algorithm based on adaptive fourth-order partial differential equation, IET Image Process., 11 (2017), 870-879.
doi: 10.1049/iet-ipr.2016.0898. |
[20] |
F. Liu and J. Liu,
Anisotropic diffusion for image denoising based on diffusion tensors, Journal of Visual Communication and Image Representation, 23 (2012), 516-521.
doi: 10.1016/j.jvcir.2012.01.012. |
[21] |
X. Liu, L. Huang and Z. Guo,
Adaptive fourth-order partial differential equation filter for image denoising, Appl. Math. Lett., 24 (2011), 1282-1288.
doi: 10.1016/j.aml.2011.01.028. |
[22] |
X. Y. Liu, C.-H. Lai and K. A. Pericleous,
A fourth-order partial differential equation denoising model with an adaptive relaxation method, Int. J. Comput. Math., 92 (2015), 608-622.
doi: 10.1080/00207160.2014.904854. |
[23] |
B. Lu and Q. Liu, Image restoration with surface-based fourth-order partial differential equation, In Visual Communications and Image Processing 2010, International Society for Optics and Photonics, 7744 (2010), 774424. |
[24] |
T. Lu, P. Neittaanmaki and X.-C. Tai,
A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations, Math. Anal. Numér., 26 (1992), 673-708.
doi: 10.1051/m2an/1992260606731. |
[25] |
M. Lysaker, A. Lundervold and X.-C. Tai,
Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.
doi: 10.1109/TIP.2003.819229. |
[26] |
M. Lysaker, S. Osher and X.-C. Tai,
Noise removal using smoothed normals and surface fitting, IEEE Trans. Image Process., 13 (2004), 1345-1357.
doi: 10.1109/TIP.2004.834662. |
[27] |
M. Lysaker and X.-C. Tai,
Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis., 66 (2006), 5-18.
doi: 10.1007/s11263-005-3219-7. |
[28] |
D. Martin, C. Fowlkes, D. Tal and J. Malik,
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision, 2 (2001), 416-423.
doi: 10.1109/ICCV.2001.937655. |
[29] |
V. Murali and P. Sudeep, Image denoising using DnCNN: An exploration study, In Advances in Communication Systems and Networks, Springer, 656 (2020), 847–859.
doi: 10.1007/978-981-15-3992-3_72. |
[30] |
K. Papafitsoros and C.-B. Schönlieb,
A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vision, 48 (2014), 308-338.
doi: 10.1007/s10851-013-0445-4. |
[31] |
Y. Pathak, K. Arya and S. Tiwari, Fourth-order partial differential equations based anisotropic diffusion model for low-dose CT images, Modern Phys. Lett. B, 32 (2018), 1850300, 26 pp.
doi: 10.1142/S0217984918503001. |
[32] |
P. Perona and J. Malik,
Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[33] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[34] |
K. Shi, D. Zhang, Z. Guo and B. Wu,
A linear reaction-diffusion system with interior degeneration for color image compression, SIAM J. Imaging Sci., 11 (2018), 442-472.
doi: 10.1137/17M1137991. |
[35] |
R. S. Varga, Matrix Iterative Analysis, vol. 27, Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-3-642-05156-2. |
[36] |
Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli,
Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861. |
[37] |
J. Weickert,
Applications of nonlinear diffusion in image processing and computer vision, Acta Math. Univ. Comenian., 70 (2001), 33-50.
|
[38] |
J. Weickert, B. Romeny and M. Viergever,
Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process., 7 (1998), 398-410.
doi: 10.1109/83.661190. |
[39] |
J. Weickert, S. Grewenig, C. Schroers and A. Bruhn,
Cyclic schemes for PDE-based image analysis, Int. J. Comput. Vis., 118 (2016), 275-299.
doi: 10.1007/s11263-015-0874-1. |
[40] |
W. Yao, Z. Guo, J. Sun, B. Wu and H. Gao,
Multiplicative noise removal for texture images based on adaptive anisotropic fractional diffusion equations, SIAM J. Imaging Sci., 12 (2019), 839-873.
doi: 10.1137/18M1187192. |
[41] |
Y.-L. You and M. Kaveh,
Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9 (2000), 1723-1730.
doi: 10.1109/83.869184. |
[42] |
W. Zeng, X. Lu and X. Tan, A class of fourth-order telegraph-diffusion equations for image restoration, J. Appl. Math., 2011 (2011), Art. ID 240370, 20 pp.
doi: 10.1155/2011/240370. |
[43] |
K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang,
Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26 (2017), 3142-3155.
doi: 10.1109/TIP.2017.2662206. |
[44] |
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu,
A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185. |
[45] |
W. Zhu and T. Chan,
Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5 (2012), 1-32.
doi: 10.1137/110822268. |
show all references
References:
[1] |
A. Bertozzi and J. Greer,
Low-curvature image simplifiers: Global regularity of smooth solutions and Laplacian limiting schemes, Commun. Pur. Appl. Math., 57 (2004), 764-790.
doi: 10.1002/cpa.20019. |
[2] |
A. Bertozzi, J. Greer, S. Osher and K. Vixie,
Nonlinear regularizations of TV based PDEs for image processing, Contemp. Math, 371 (2005), 29-40.
doi: 10.1090/conm/371/06846. |
[3] |
C. Brito-Loeza and K. Chen,
Multigrid algorithm for high order denoising, SIAM J. Imaging Sci., 3 (2010), 363-389.
doi: 10.1137/080737903. |
[4] |
D. Calvetti and L. Reichel,
Adaptive Richardson iteration based on Leja points, J. Comput. Appl. Math., 71 (1996), 267-286.
doi: 10.1016/0377-0427(96)87162-7. |
[5] |
F. Catté, P.-L. Lions, J.-M. Morel and T. Coll,
Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193.
doi: 10.1137/0729012. |
[6] |
T. Chan, A. Marquina and P. Mulet,
High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.
doi: 10.1137/S1064827598344169. |
[7] |
P. Chen and Y. Wang, Fourth-order partial differential equations for image inpainting, In 2008 International Conference on Audio, Language and Image Processing, (2008), 1713–1717. |
[8] |
P. Chen and Y. Wang,
A new fourth-order equation model for image inpainting, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 5 (2009), 320-324.
doi: 10.1109/FSKD.2009.201. |
[9] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian,
Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238. |
[10] |
S. Durand, J. Fadili and M. Nikolova,
Multiplicative noise removal using L1 fidelity on frame coefficients, J. Math. Imaging Vision, 36 (2010), 201-226.
doi: 10.1007/s10851-009-0180-z. |
[11] |
S. Grewenig, J. Weickert and A. Bruhn,
From box filtering to fast explicit diffusion, Pattern Recognit., 6376 (2010), 533-542.
doi: 10.1007/978-3-642-15986-2_54. |
[12] |
M. R. Hajiaboli,
A self-governing hybrid model for noise removal, Pacific-Rim Symposium on Image and Video Technology, 5414 (2009), 295-305.
doi: 10.1007/978-3-540-92957-4_26. |
[13] |
M. R. Hajiaboli,
An anisotropic fourth-order diffusion filter for image noise removal, Int. J. Comput. Vis., 92 (2011), 177-191.
doi: 10.1007/s11263-010-0330-1. |
[14] |
S. Kim and H. Lim,
Fourth-order partial differential equations for effective image denoising, Electron. J. Differ. Equ. Conf., 17 (2009), 107-121.
|
[15] |
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980. |
[16] |
F. Li, C. Shen, J. Fan and C. Shen,
Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18 (2007), 322-330.
doi: 10.1016/j.jvcir.2007.04.005. |
[17] |
P. Li, S.-J. Li, Z.-A. Yao and Z.-J. Zhang,
Two anisotropic fourth-order partial differential equations for image inpainting, IET Image Process., 7 (2013), 260-269.
doi: 10.1049/iet-ipr.2012.0592. |
[18] |
P. Li, Y. Zou and Z. Yao,
Fourth-order anisotropic diffusion equations for image zooming, Journal of Image and Graphics, 18 (2013), 1261-1269.
|
[19] |
S. Li and X. Yang,
Novel image inpainting algorithm based on adaptive fourth-order partial differential equation, IET Image Process., 11 (2017), 870-879.
doi: 10.1049/iet-ipr.2016.0898. |
[20] |
F. Liu and J. Liu,
Anisotropic diffusion for image denoising based on diffusion tensors, Journal of Visual Communication and Image Representation, 23 (2012), 516-521.
doi: 10.1016/j.jvcir.2012.01.012. |
[21] |
X. Liu, L. Huang and Z. Guo,
Adaptive fourth-order partial differential equation filter for image denoising, Appl. Math. Lett., 24 (2011), 1282-1288.
doi: 10.1016/j.aml.2011.01.028. |
[22] |
X. Y. Liu, C.-H. Lai and K. A. Pericleous,
A fourth-order partial differential equation denoising model with an adaptive relaxation method, Int. J. Comput. Math., 92 (2015), 608-622.
doi: 10.1080/00207160.2014.904854. |
[23] |
B. Lu and Q. Liu, Image restoration with surface-based fourth-order partial differential equation, In Visual Communications and Image Processing 2010, International Society for Optics and Photonics, 7744 (2010), 774424. |
[24] |
T. Lu, P. Neittaanmaki and X.-C. Tai,
A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations, Math. Anal. Numér., 26 (1992), 673-708.
doi: 10.1051/m2an/1992260606731. |
[25] |
M. Lysaker, A. Lundervold and X.-C. Tai,
Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.
doi: 10.1109/TIP.2003.819229. |
[26] |
M. Lysaker, S. Osher and X.-C. Tai,
Noise removal using smoothed normals and surface fitting, IEEE Trans. Image Process., 13 (2004), 1345-1357.
doi: 10.1109/TIP.2004.834662. |
[27] |
M. Lysaker and X.-C. Tai,
Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis., 66 (2006), 5-18.
doi: 10.1007/s11263-005-3219-7. |
[28] |
D. Martin, C. Fowlkes, D. Tal and J. Malik,
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision, 2 (2001), 416-423.
doi: 10.1109/ICCV.2001.937655. |
[29] |
V. Murali and P. Sudeep, Image denoising using DnCNN: An exploration study, In Advances in Communication Systems and Networks, Springer, 656 (2020), 847–859.
doi: 10.1007/978-981-15-3992-3_72. |
[30] |
K. Papafitsoros and C.-B. Schönlieb,
A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vision, 48 (2014), 308-338.
doi: 10.1007/s10851-013-0445-4. |
[31] |
Y. Pathak, K. Arya and S. Tiwari, Fourth-order partial differential equations based anisotropic diffusion model for low-dose CT images, Modern Phys. Lett. B, 32 (2018), 1850300, 26 pp.
doi: 10.1142/S0217984918503001. |
[32] |
P. Perona and J. Malik,
Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[33] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[34] |
K. Shi, D. Zhang, Z. Guo and B. Wu,
A linear reaction-diffusion system with interior degeneration for color image compression, SIAM J. Imaging Sci., 11 (2018), 442-472.
doi: 10.1137/17M1137991. |
[35] |
R. S. Varga, Matrix Iterative Analysis, vol. 27, Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-3-642-05156-2. |
[36] |
Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli,
Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861. |
[37] |
J. Weickert,
Applications of nonlinear diffusion in image processing and computer vision, Acta Math. Univ. Comenian., 70 (2001), 33-50.
|
[38] |
J. Weickert, B. Romeny and M. Viergever,
Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process., 7 (1998), 398-410.
doi: 10.1109/83.661190. |
[39] |
J. Weickert, S. Grewenig, C. Schroers and A. Bruhn,
Cyclic schemes for PDE-based image analysis, Int. J. Comput. Vis., 118 (2016), 275-299.
doi: 10.1007/s11263-015-0874-1. |
[40] |
W. Yao, Z. Guo, J. Sun, B. Wu and H. Gao,
Multiplicative noise removal for texture images based on adaptive anisotropic fractional diffusion equations, SIAM J. Imaging Sci., 12 (2019), 839-873.
doi: 10.1137/18M1187192. |
[41] |
Y.-L. You and M. Kaveh,
Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9 (2000), 1723-1730.
doi: 10.1109/83.869184. |
[42] |
W. Zeng, X. Lu and X. Tan, A class of fourth-order telegraph-diffusion equations for image restoration, J. Appl. Math., 2011 (2011), Art. ID 240370, 20 pp.
doi: 10.1155/2011/240370. |
[43] |
K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang,
Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26 (2017), 3142-3155.
doi: 10.1109/TIP.2017.2662206. |
[44] |
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu,
A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185. |
[45] |
W. Zhu and T. Chan,
Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5 (2012), 1-32.
doi: 10.1137/110822268. |














Images | TV | LLT | AFD | MC | TDM | BM3D | DnCNN | FED | AOS | |
40 | geometry | 32.343 | 35.768 | 28.691 | 29.557 | |||||
0.190 | 0.266 | 0.186 | 0.923 | |||||||
20 | slope-1 | |||||||||
15 | slope-2 | |||||||||
Images | TV | LLT | AFD | MC | TDM | BM3D | DnCNN | FED | AOS | |
40 | geometry | 32.343 | 35.768 | 28.691 | 29.557 | |||||
0.190 | 0.266 | 0.186 | 0.923 | |||||||
20 | slope-1 | |||||||||
15 | slope-2 | |||||||||
Images | TV | LLT | AFD | MC | TDM | BM3D | DnCNN | Expct | FED | AOS | |
10 | piggy | 38.328 | 37.305 | 38.418 | 37.222 | 38.432 | 40.535 | 41.522 | 39.505 | 39.571 | 39.763 |
0.614 | 0.555 | 0.629 | 0.505 | 0.619 | 0.627 | 0.993 | 0.657 | 0.649 | 0.670 | ||
butterfly | 32.716 | 32.194 | 32.231 | 32.473 | 33.151 | 33.257 | 34.712 | 33.158 | 33.074 | 33.143 | |
0.812 | 0.795 | 0.812 | 0.797 | 0.824 | 0.830 | 0.984 | 0.821 | 0.818 | 0.823 | ||
castle | 32.705 | 32.140 | 31.834 | 32.131 | 32.740 | 34.089 | 34.616 | 32.940 | 32.787 | 32.803 | |
0.563 | 0.554 | 0.548 | 0.550 | 0.579 | 0.626 | 0.967 | 0.561 | 0.559 | 0.562 | ||
Lena | 32.926 | 33.061 | 32.535 | 33.019 | 33.238 | 34.513 | 34.892 | 33.370 | 33.230 | 33.386 | |
0.719 | 0.726 | 0.706 | 0.731 | 0.727 | 0.743 | 0.965 | 0.724 | 0.715 | 0.730 | ||
starfish | 32.224 | 32.368 | 31.651 | 32.190 | 32.768 | 33.305 | 34.305 | 32.805 | 32.720 | 32.684 | |
0.827 | 0.835 | 0.825 | 0.835 | 0.842 | 0.844 | 0.970 | 0.839 | 0.835 | 0.839 | ||
parrot | 32.362 | 31.787 | 31.592 | 31.766 | 32.550 | 33.365 | 33.940 | 32.505 | 32.376 | 32.434 | |
0.693 | 0.686 | 0.693 | 0.674 | 0.709 | 0.745 | 0.968 | 0.706 | 0.705 | 0.695 | ||
20 | piggy | 34.776 | 33.147 | 34.775 | 33.691 | 35.002 | 36.572 | 37.803 | 35.896 | 35.942 | 36.101 |
0.541 | 0.460 | 0.560 | 0.432 | 0.600 | 0.531 | 0.988 | 0.606 | 0.595 | 0.617 | ||
butterfly | 28.628 | 27.698 | 28.486 | 28.647 | 29.267 | 29.575 | 30.948 | 29.033 | 29.054 | 29.196 | |
0.741 | 0.700 | 0.748 | 0.721 | 0.764 | 0.775 | 0.969 | 0.754 | 0.758 | 0.758 | ||
castle | 28.986 | 28.038 | 28.369 | 28.287 | 29.023 | 30.482 | 31.214 | 29.080 | 29.018 | 29.047 | |
0.437 | 0.420 | 0.440 | 0.431 | 0.480 | 0.506 | 0.943 | 0.452 | 0.443 | 0.446 | ||
Lena | 29.567 | 29.582 | 29.416 | 29.592 | 29.852 | 31.314 | 31.682 | 29.990 | 29.941 | 30.070 | |
0.589 | 0.604 | 0.589 | 0.606 | 0.613 | 0.643 | 0.938 | 0.607 | 0.603 | 0.612 | ||
starfish | 28.342 | 28.307 | 28.065 | 28.344 | 28.787 | 29.655 | 30.498 | 28.777 | 28.740 | 28.782 | |
0.725 | 0.737 | 0.725 | 0.742 | 0.746 | 0.752 | 0.939 | 0.744 | 0.741 | 0.745 | ||
parrot | 28.725 | 27.863 | 28.240 | 28.257 | 28.992 | 29.749 | 30.553 | 28.906 | 28.864 | 28.937 | |
0.579 | 0.567 | 0.595 | 0.576 | 0.614 | 0.611 | 0.940 | 0.605 | 0.600 | 0.603 | ||
30 | piggy | 32.805 | 31.089 | 33.046 | 31.812 | 32.968 | 34.099 | 35.553 | 33.896 | 33.923 | 34.104 |
0.498 | 0.427 | 0.528 | 0.405 | 0.562 | 0.490 | 0.982 | 0.553 | 0.554 | 0.574 | ||
butterfly | 26.345 | 25.334 | 26.424 | 26.591 | 26.997 | 27.648 | 28.819 | 26.856 | 26.826 | 27.017 | |
0.691 | 0.646 | 0.697 | 0.679 | 0.712 | 0.730 | 0.955 | 0.710 | 0.704 | 0.710 | ||
castle | 26.979 | 25.834 | 26.548 | 26.177 | 27.031 | 28.454 | 29.280 | 26.996 | 26.973 | 27.032 | |
0.376 | 0.351 | 0.390 | 0.367 | 0.423 | 0.441 | 0.923 | 0.399 | 0.414 | 0.417 | ||
Lena | 27.841 | 27.685 | 27.735 | 27.740 | 28.047 | 29.489 | 29.863 | 28.189 | 28.171 | 28.183 | |
0.514 | 0.531 | 0.519 | 0.535 | 0.548 | 0.574 | 0.915 | 0.536 | 0.534 | 0.540 | ||
starfish | 26.305 | 26.111 | 26.152 | 26.149 | 26.649 | 27.525 | 28.368 | 26.563 | 26.540 | 26.622 | |
0.639 | 0.652 | 0.643 | 0.657 | 0.665 | 0.684 | 0.908 | 0.659 | 0.659 | 0.662 | ||
parrot | 26.677 | 25.633 | 26.432 | 26.271 | 26.995 | 27.616 | 28.679 | 26.876 | 26.858 | 26.947 | |
0.509 | 0.494 | 0.526 | 0.509 | 0.550 | 0.531 | 0.918 | 0.539 | 0.537 | 0.539 | ||
40 | piggy | 31.204 | 29.491 | 31.406 | 30.134 | 31.335 | 31.773 | 33.642 | 32.193 | 32.207 | 32.151 |
0.466 | 0.413 | 0.506 | 0.367 | 0.541 | 0.452 | 0.975 | 0.527 | 0.522 | 0.523 | ||
butterfly | 24.837 | 23.764 | 24.995 | 25.077 | 25.383 | 26.097 | 27.347 | 25.396 | 25.423 | 25.435 | |
0.646 | 0.601 | 0.656 | 0.644 | 0.664 | 0.688 | 0.938 | 0.668 | 0.667 | 0.668 | ||
castle | 25.672 | 24.460 | 25.379 | 24.780 | 25.619 | 26.923 | 27.868 | 25.619 | 25.671 | 25.699 | |
0.325 | 0.299 | 0.341 | 0.316 | 0.376 | 0.380 | 0.902 | 0.343 | 0.360 | 0.368 | ||
Lena | 26.657 | 26.381 | 26.528 | 26.479 | 26.741 | 28.139 | 28.575 | 26.938 | 26.925 | 26.975 | |
0.452 | 0.469 | 0.460 | 0.472 | 0.495 | 0.515 | 0.893 | 0.479 | 0.478 | 0.481 | ||
starfish | 24.962 | 24.734 | 24.785 | 24.697 | 25.206 | 25.907 | 26.849 | 25.189 | 25.171 | 25.237 | |
0.585 | 0.600 | 0.589 | 0.600 | 0.616 | 0.627 | 0.883 | 0.609 | 0.608 | 0.612 | ||
parrot | 25.318 | 24.286 | 25.270 | 24.966 | 25.666 | 25.904 | 27.387 | 25.640 | 25.622 | 25.739 | |
0.459 | 0.452 | 0.479 | 0.469 | 0.516 | 0.476 | 0.899 | 0.494 | 0.489 | 0.489 | ||
50 | piggy | 30.071 | 28.470 | 30.225 | 28.882 | 30.005 | 29.625 | 32.247 | 30.977 | 31.053 | 30.944 |
0.446 | 0.399 | 0.472 | 0.342 | 0.525 | 0.439 | 0.965 | 0.490 | 0.492 | 0.497 | ||
butterfly | 23.581 | 22.625 | 23.872 | 23.926 | 24.048 | 24.465 | 26.321 | 24.189 | 24.169 | 24.258 | |
0.608 | 0.563 | 0.626 | 0.610 | 0.625 | 0.643 | 0.926 | 0.634 | 0.633 | 0.637 | ||
castle | 24.870 | 23.713 | 24.662 | 23.967 | 24.755 | 25.678 | 27.002 | 24.903 | 24.883 | 24.916 | |
0.285 | 0.262 | 0.302 | 0.276 | 0.342 | 0.330 | 0.885 | 0.313 | 0.308 | 0.307 | ||
Lena | 25.720 | 25.308 | 25.505 | 25.389 | 25.694 | 26.866 | 27.466 | 25.873 | 25.864 | 25.847 | |
0.407 | 0.422 | 0.409 | 0.421 | 0.455 | 0.456 | 0.869 | 0.426 | 0.424 | 0.433 | ||
starfish | 23.966 | 23.781 | 23.783 | 23.779 | 24.101 | 24.348 | 25.621 | 24.144 | 24.128 | 24.191 | |
0.532 | 0.553 | 0.535 | 0.557 | 0.569 | 0.554 | 0.856 | 0.555 | 0.554 | 0.559 | ||
parrot | 24.302 | 23.222 | 24.385 | 23.931 | 24.652 | 24.401 | 26.434 | 24.629 | 24.639 | 24.715 | |
0.412 | 0.412 | 0.429 | 0.426 | 0.474 | 0.424 | 0.883 | 0.443 | 0.442 | 0.444 |
Images | TV | LLT | AFD | MC | TDM | BM3D | DnCNN | Expct | FED | AOS | |
10 | piggy | 38.328 | 37.305 | 38.418 | 37.222 | 38.432 | 40.535 | 41.522 | 39.505 | 39.571 | 39.763 |
0.614 | 0.555 | 0.629 | 0.505 | 0.619 | 0.627 | 0.993 | 0.657 | 0.649 | 0.670 | ||
butterfly | 32.716 | 32.194 | 32.231 | 32.473 | 33.151 | 33.257 | 34.712 | 33.158 | 33.074 | 33.143 | |
0.812 | 0.795 | 0.812 | 0.797 | 0.824 | 0.830 | 0.984 | 0.821 | 0.818 | 0.823 | ||
castle | 32.705 | 32.140 | 31.834 | 32.131 | 32.740 | 34.089 | 34.616 | 32.940 | 32.787 | 32.803 | |
0.563 | 0.554 | 0.548 | 0.550 | 0.579 | 0.626 | 0.967 | 0.561 | 0.559 | 0.562 | ||
Lena | 32.926 | 33.061 | 32.535 | 33.019 | 33.238 | 34.513 | 34.892 | 33.370 | 33.230 | 33.386 | |
0.719 | 0.726 | 0.706 | 0.731 | 0.727 | 0.743 | 0.965 | 0.724 | 0.715 | 0.730 | ||
starfish | 32.224 | 32.368 | 31.651 | 32.190 | 32.768 | 33.305 | 34.305 | 32.805 | 32.720 | 32.684 | |
0.827 | 0.835 | 0.825 | 0.835 | 0.842 | 0.844 | 0.970 | 0.839 | 0.835 | 0.839 | ||
parrot | 32.362 | 31.787 | 31.592 | 31.766 | 32.550 | 33.365 | 33.940 | 32.505 | 32.376 | 32.434 | |
0.693 | 0.686 | 0.693 | 0.674 | 0.709 | 0.745 | 0.968 | 0.706 | 0.705 | 0.695 | ||
20 | piggy | 34.776 | 33.147 | 34.775 | 33.691 | 35.002 | 36.572 | 37.803 | 35.896 | 35.942 | 36.101 |
0.541 | 0.460 | 0.560 | 0.432 | 0.600 | 0.531 | 0.988 | 0.606 | 0.595 | 0.617 | ||
butterfly | 28.628 | 27.698 | 28.486 | 28.647 | 29.267 | 29.575 | 30.948 | 29.033 | 29.054 | 29.196 | |
0.741 | 0.700 | 0.748 | 0.721 | 0.764 | 0.775 | 0.969 | 0.754 | 0.758 | 0.758 | ||
castle | 28.986 | 28.038 | 28.369 | 28.287 | 29.023 | 30.482 | 31.214 | 29.080 | 29.018 | 29.047 | |
0.437 | 0.420 | 0.440 | 0.431 | 0.480 | 0.506 | 0.943 | 0.452 | 0.443 | 0.446 | ||
Lena | 29.567 | 29.582 | 29.416 | 29.592 | 29.852 | 31.314 | 31.682 | 29.990 | 29.941 | 30.070 | |
0.589 | 0.604 | 0.589 | 0.606 | 0.613 | 0.643 | 0.938 | 0.607 | 0.603 | 0.612 | ||
starfish | 28.342 | 28.307 | 28.065 | 28.344 | 28.787 | 29.655 | 30.498 | 28.777 | 28.740 | 28.782 | |
0.725 | 0.737 | 0.725 | 0.742 | 0.746 | 0.752 | 0.939 | 0.744 | 0.741 | 0.745 | ||
parrot | 28.725 | 27.863 | 28.240 | 28.257 | 28.992 | 29.749 | 30.553 | 28.906 | 28.864 | 28.937 | |
0.579 | 0.567 | 0.595 | 0.576 | 0.614 | 0.611 | 0.940 | 0.605 | 0.600 | 0.603 | ||
30 | piggy | 32.805 | 31.089 | 33.046 | 31.812 | 32.968 | 34.099 | 35.553 | 33.896 | 33.923 | 34.104 |
0.498 | 0.427 | 0.528 | 0.405 | 0.562 | 0.490 | 0.982 | 0.553 | 0.554 | 0.574 | ||
butterfly | 26.345 | 25.334 | 26.424 | 26.591 | 26.997 | 27.648 | 28.819 | 26.856 | 26.826 | 27.017 | |
0.691 | 0.646 | 0.697 | 0.679 | 0.712 | 0.730 | 0.955 | 0.710 | 0.704 | 0.710 | ||
castle | 26.979 | 25.834 | 26.548 | 26.177 | 27.031 | 28.454 | 29.280 | 26.996 | 26.973 | 27.032 | |
0.376 | 0.351 | 0.390 | 0.367 | 0.423 | 0.441 | 0.923 | 0.399 | 0.414 | 0.417 | ||
Lena | 27.841 | 27.685 | 27.735 | 27.740 | 28.047 | 29.489 | 29.863 | 28.189 | 28.171 | 28.183 | |
0.514 | 0.531 | 0.519 | 0.535 | 0.548 | 0.574 | 0.915 | 0.536 | 0.534 | 0.540 | ||
starfish | 26.305 | 26.111 | 26.152 | 26.149 | 26.649 | 27.525 | 28.368 | 26.563 | 26.540 | 26.622 | |
0.639 | 0.652 | 0.643 | 0.657 | 0.665 | 0.684 | 0.908 | 0.659 | 0.659 | 0.662 | ||
parrot | 26.677 | 25.633 | 26.432 | 26.271 | 26.995 | 27.616 | 28.679 | 26.876 | 26.858 | 26.947 | |
0.509 | 0.494 | 0.526 | 0.509 | 0.550 | 0.531 | 0.918 | 0.539 | 0.537 | 0.539 | ||
40 | piggy | 31.204 | 29.491 | 31.406 | 30.134 | 31.335 | 31.773 | 33.642 | 32.193 | 32.207 | 32.151 |
0.466 | 0.413 | 0.506 | 0.367 | 0.541 | 0.452 | 0.975 | 0.527 | 0.522 | 0.523 | ||
butterfly | 24.837 | 23.764 | 24.995 | 25.077 | 25.383 | 26.097 | 27.347 | 25.396 | 25.423 | 25.435 | |
0.646 | 0.601 | 0.656 | 0.644 | 0.664 | 0.688 | 0.938 | 0.668 | 0.667 | 0.668 | ||
castle | 25.672 | 24.460 | 25.379 | 24.780 | 25.619 | 26.923 | 27.868 | 25.619 | 25.671 | 25.699 | |
0.325 | 0.299 | 0.341 | 0.316 | 0.376 | 0.380 | 0.902 | 0.343 | 0.360 | 0.368 | ||
Lena | 26.657 | 26.381 | 26.528 | 26.479 | 26.741 | 28.139 | 28.575 | 26.938 | 26.925 | 26.975 | |
0.452 | 0.469 | 0.460 | 0.472 | 0.495 | 0.515 | 0.893 | 0.479 | 0.478 | 0.481 | ||
starfish | 24.962 | 24.734 | 24.785 | 24.697 | 25.206 | 25.907 | 26.849 | 25.189 | 25.171 | 25.237 | |
0.585 | 0.600 | 0.589 | 0.600 | 0.616 | 0.627 | 0.883 | 0.609 | 0.608 | 0.612 | ||
parrot | 25.318 | 24.286 | 25.270 | 24.966 | 25.666 | 25.904 | 27.387 | 25.640 | 25.622 | 25.739 | |
0.459 | 0.452 | 0.479 | 0.469 | 0.516 | 0.476 | 0.899 | 0.494 | 0.489 | 0.489 | ||
50 | piggy | 30.071 | 28.470 | 30.225 | 28.882 | 30.005 | 29.625 | 32.247 | 30.977 | 31.053 | 30.944 |
0.446 | 0.399 | 0.472 | 0.342 | 0.525 | 0.439 | 0.965 | 0.490 | 0.492 | 0.497 | ||
butterfly | 23.581 | 22.625 | 23.872 | 23.926 | 24.048 | 24.465 | 26.321 | 24.189 | 24.169 | 24.258 | |
0.608 | 0.563 | 0.626 | 0.610 | 0.625 | 0.643 | 0.926 | 0.634 | 0.633 | 0.637 | ||
castle | 24.870 | 23.713 | 24.662 | 23.967 | 24.755 | 25.678 | 27.002 | 24.903 | 24.883 | 24.916 | |
0.285 | 0.262 | 0.302 | 0.276 | 0.342 | 0.330 | 0.885 | 0.313 | 0.308 | 0.307 | ||
Lena | 25.720 | 25.308 | 25.505 | 25.389 | 25.694 | 26.866 | 27.466 | 25.873 | 25.864 | 25.847 | |
0.407 | 0.422 | 0.409 | 0.421 | 0.455 | 0.456 | 0.869 | 0.426 | 0.424 | 0.433 | ||
starfish | 23.966 | 23.781 | 23.783 | 23.779 | 24.101 | 24.348 | 25.621 | 24.144 | 24.128 | 24.191 | |
0.532 | 0.553 | 0.535 | 0.557 | 0.569 | 0.554 | 0.856 | 0.555 | 0.554 | 0.559 | ||
parrot | 24.302 | 23.222 | 24.385 | 23.931 | 24.652 | 24.401 | 26.434 | 24.629 | 24.639 | 24.715 | |
0.412 | 0.412 | 0.429 | 0.426 | 0.474 | 0.424 | 0.883 | 0.443 | 0.442 | 0.444 |
TV | LLT | AFD | MC | TDM | BM3D | DnCNN | Expct | FED | AOS | |
10 | 33.544 | 33.142 | 33.044 | 33.134 | 33.813 | 34.844 | 35.665 | 34.047 | 33.960 | 34.036 |
0.705 | 0.692 | 0.702 | 0.682 | 0.717 | 0.736 | 0.975 | 0.718 | 0.714 | 0.720 | |
20 | 29.837 | 29.106 | 29.559 | 29.470 | 30.154 | 31.224 | 32.116 | 30.280 | 30.260 | 30.355 |
0.602 | 0.581 | 0.610 | 0.585 | 0.636 | 0.637 | 0.953 | 0.628 | 0.623 | 0.630 | |
30 | 27.825 | 26.948 | 27.723 | 23.534 | 28.115 | 29.138 | 30.094 | 28.229 | 28.215 | 28.317 |
0.538 | 0.517 | 0.551 | 0.450 | 0.577 | 0.575 | 0.933 | 0.566 | 0.567 | 0.574 | |
40 | 26.442 | 25.519 | 26.394 | 26.022 | 26.658 | 27.457 | 28.611 | 26.829 | 26.836 | 26.873 |
0.489 | 0.472 | 0.505 | 0.478 | 0.535 | 0.523 | 0.915 | 0.520 | 0.521 | 0.524 | |
50 | 25.419 | 24.520 | 25.405 | 24.979 | 25.542 | 25.897 | 27.515 | 25.786 | 25.789 | 25.812 |
0.448 | 0.435 | 0.462 | 0.439 | 0.498 | 0.474 | 0.897 | 0.477 | 0.475 | 0.479 | |
Average | 28.613 | 27.847 | 28.425 | 27.428 | 28.856 | 29.712 | 30.800 | 29.034 | 29.012 | 29.079 |
0.556 | 0.539 | 0.566 | 0.527 | 0.592 | 0.589 | 0.935 | 0.582 | 0.580 | 0.585 |
TV | LLT | AFD | MC | TDM | BM3D | DnCNN | Expct | FED | AOS | |
10 | 33.544 | 33.142 | 33.044 | 33.134 | 33.813 | 34.844 | 35.665 | 34.047 | 33.960 | 34.036 |
0.705 | 0.692 | 0.702 | 0.682 | 0.717 | 0.736 | 0.975 | 0.718 | 0.714 | 0.720 | |
20 | 29.837 | 29.106 | 29.559 | 29.470 | 30.154 | 31.224 | 32.116 | 30.280 | 30.260 | 30.355 |
0.602 | 0.581 | 0.610 | 0.585 | 0.636 | 0.637 | 0.953 | 0.628 | 0.623 | 0.630 | |
30 | 27.825 | 26.948 | 27.723 | 23.534 | 28.115 | 29.138 | 30.094 | 28.229 | 28.215 | 28.317 |
0.538 | 0.517 | 0.551 | 0.450 | 0.577 | 0.575 | 0.933 | 0.566 | 0.567 | 0.574 | |
40 | 26.442 | 25.519 | 26.394 | 26.022 | 26.658 | 27.457 | 28.611 | 26.829 | 26.836 | 26.873 |
0.489 | 0.472 | 0.505 | 0.478 | 0.535 | 0.523 | 0.915 | 0.520 | 0.521 | 0.524 | |
50 | 25.419 | 24.520 | 25.405 | 24.979 | 25.542 | 25.897 | 27.515 | 25.786 | 25.789 | 25.812 |
0.448 | 0.435 | 0.462 | 0.439 | 0.498 | 0.474 | 0.897 | 0.477 | 0.475 | 0.479 | |
Average | 28.613 | 27.847 | 28.425 | 27.428 | 28.856 | 29.712 | 30.800 | 29.034 | 29.012 | 29.079 |
0.556 | 0.539 | 0.566 | 0.527 | 0.592 | 0.589 | 0.935 | 0.582 | 0.580 | 0.585 |
Expct | FED | AOS | |
10 | 4.083 | 2.333 | 1.922 |
20 | 13.863 | 6.509 | 4.222 |
30 | 28.385 | 21.427 | 9.419 |
40 | 44.120 | 32.749 | 19.449 |
50 | 63.855 | 32.065 | 15.770 |
Expct | FED | AOS | |
10 | 4.083 | 2.333 | 1.922 |
20 | 13.863 | 6.509 | 4.222 |
30 | 28.385 | 21.427 | 9.419 |
40 | 44.120 | 32.749 | 19.449 |
50 | 63.855 | 32.065 | 15.770 |
[1] |
Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931 |
[2] |
Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564 |
[3] |
Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018 |
[4] |
José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1 |
[5] |
Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037 |
[6] |
Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225 |
[7] |
Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188 |
[8] |
Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729 |
[9] |
Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108 |
[10] |
Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 |
[11] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[12] |
Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275 |
[13] |
Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025 |
[14] |
Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122 |
[15] |
Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156 |
[16] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[17] |
Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032 |
[18] |
Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113 |
[19] |
Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064 |
[20] |
Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]