• Previous Article
    Inverse boundary value problems for polyharmonic operators with non-smooth coefficients
  • IPI Home
  • This Issue
  • Next Article
    A new anisotropic fourth-order diffusion equation model based on image features for image denoising
August  2022, 16(4): 925-942. doi: 10.3934/ipi.2022005

An iterative scheme for imaging acoustic obstacle from phaseless total-field data

School of Mathematics, Jilin University, Changchun, 130012, China

* Corresponding author: Deyue Zhang

Received  July 2021 Revised  December 2021 Published  August 2022 Early access  February 2022

Fund Project: The first author is supported by NSFC grants 12171201 and the National Key Research and Development Program of China (grant No. 2020YFA0713602). The second author is supported by NSFC grants 12171200

In this paper, we consider the inverse problem of determining the location and the shape of a sound-soft or sound-hard obstacle from the modulus of the total-field collected on a measured curve for an incident point source. We propose a system of nonlinear integral equations based iterative scheme to reconstruct both the location and the shape of the obstacle. Several validating numerical examples are provided to illustrate the effectiveness and robustness of the proposed inversion algorithm.

Citation: Heping Dong, Deyue Zhang, Yingwei Chi. An iterative scheme for imaging acoustic obstacle from phaseless total-field data. Inverse Problems and Imaging, 2022, 16 (4) : 925-942. doi: 10.3934/ipi.2022005
References:
[1]

H. AmmariY. T. Tin and J. Zou, Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients, SIAM J. Appl. Math., 76 (2016), 1000-1030.  doi: 10.1137/15M1043959.

[2]

G. BaoP. Li and J. Lv, Numerical solution of an inverse diffraction grating problem from phaseless data, J. Opt. Soc. Am. A, 30 (2013), 293-299.  doi: 10.1364/JOSAA.30.000293.

[3]

Z. Chen and G. Huang, A direct imaging method for electromagnetic scattering data without phase information, SIAM J. Imaging Sci., 9 (2016), 1273-1297.  doi: 10.1137/15M1053475.

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.

[5]

H. Dong, J. Lai and P. Li, An inverse acoustic-elastic interaction problem with phased or phaseless far-field data, Inverse Probl., 36 (2020), 35014, 36 pp. doi: 10.1088/1361-6420/ab693e.

[6]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J.Imaging Science, 12 (2019), 809-838.  doi: 10.1137/18M1227263.

[7]

H. DongD. Zhang and Y. Guo, A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data, Inverse Probl. Imaging, 13 (2019), 177-195.  doi: 10.3934/ipi.2019010.

[8]

P. GaoH. Dong and F. Ma, Inverse scattering via nonlinear integral equations method for a sound-soft crack from phaseless data, Appl. Math., 63 (2018), 149-165.  doi: 10.21136/AM.2018.0154-17.

[9]

O. Ivanyshyn, Shape reconstruction of acoustic obstacles from the modulus of the far field pattern, Inverse Probl. Imaging, 1 (2007), 609-622.  doi: 10.3934/ipi.2007.1.609.

[10]

O. Ivanyshyn and T. Johansson, Nonlinear integral eqaution methods for the reconstruction of an acoustically sound-soft obstacle, J. Integral Equations Appl., 19 (2007), 289-308.  doi: 10.1216/jiea/1190905488.

[11]

O. Ivanyshyn and T. Johansson, Boundary integral eqautions for acoustical inverse sound-soft scattering, J. Inverse Ill-Posed Probl., 16 (2008), 65-78.  doi: 10.1515/jiip.2008.005.

[12]

O. Ivanyshyn and R. Kress, Identification of sound-soft 3D obstacles from phaseless data, Inverse Probl. Imaging, 4 (2010), 131-149.  doi: 10.3934/ipi.2010.4.131.

[13]

X. JiX. Liu and B. Zhang, Target reconstruction with a reference point scatterer using phaseless far field patterns, SIAM J. Imaging Sci., 12 (2019), 372-391.  doi: 10.1137/18M1205789.

[14]

T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern, IMA J. Appl. Math., 72 (2007), 96-112.  doi: 10.1093/imamat/hxl026.

[15]

A. KarageorghisB. T. Johansson and D. Lesnic, The method of fundamental solutions for the identification of a sound-soft obstacle in inverse acoustic scattering, Appl. Numer. Math., 62 (2012), 1767-1780.  doi: 10.1016/j.apnum.2012.05.011.

[16]

M. V. Klibanov, A phaseless inverse scattering problem for the 3-D Helmholtz equation, Inverse Probl. Imaging, 11 (2017), 263-276.  doi: 10.3934/ipi.2017013.

[17]

R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Inverse Probl., 19 (2003), 91-104.  doi: 10.1088/0266-5611/19/6/056.

[18]

R. Kress and W. Rundell, Inverse obstacle scattering with modulus of the far field pattern as data, Inverse Problems in Medical Imaging and Nondestructive Testing, (1997), 75–92.

[19]

K. M. Lee, Shape reconstructions from phaseless data, Eng. Anal. Bound. Elem., 71 (2016), 174-178.  doi: 10.1016/j.enganabound.2016.08.001.

[20]

X. Liu and B. Zhang, Unique determination of a sound-soft ball by the modulus of a single far field datum, J. Math. Anal. Appl., 365 (2010), 619-624.  doi: 10.1016/j.jmaa.2009.11.031.

[21]

X. XuB. Zhang and H. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency, Inverse Probl. Imaging, 14 (2020), 489-510.  doi: 10.3934/ipi.2020023.

[22]

N. Ye and J. Liu, Uniqueness in determining a sound-hard ball with the modulus of a far-field datum, Appl. Anal., 98 (2019), 969-980.  doi: 10.1080/00036811.2017.1408078.

[23]

D. ZhangY. GuoF. Sun and H. Liu, Unique determinations in inverse scattering problems with phaseless near-field measurements, Inverse Probl. Imaging, 14 (2020), 569-582.  doi: 10.3934/ipi.2020026.

[24]

B. Zhang and H. Zhang, Recovering scattering obstacles by multi-frequency phaseless far-field data, J. Comput. Phys., 345 (2017), 58-73.  doi: 10.1016/j.jcp.2017.05.022.

[25]

B. Zhang and H. Zhang, An approximate factorization method for inverse acoustic scattering with phaseless total-field data, SIAM J. Appl. Math., 80 (2020), 2271-2298.  doi: 10.1137/19M1280612.

show all references

References:
[1]

H. AmmariY. T. Tin and J. Zou, Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients, SIAM J. Appl. Math., 76 (2016), 1000-1030.  doi: 10.1137/15M1043959.

[2]

G. BaoP. Li and J. Lv, Numerical solution of an inverse diffraction grating problem from phaseless data, J. Opt. Soc. Am. A, 30 (2013), 293-299.  doi: 10.1364/JOSAA.30.000293.

[3]

Z. Chen and G. Huang, A direct imaging method for electromagnetic scattering data without phase information, SIAM J. Imaging Sci., 9 (2016), 1273-1297.  doi: 10.1137/15M1053475.

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.

[5]

H. Dong, J. Lai and P. Li, An inverse acoustic-elastic interaction problem with phased or phaseless far-field data, Inverse Probl., 36 (2020), 35014, 36 pp. doi: 10.1088/1361-6420/ab693e.

[6]

H. DongJ. Lai and P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J.Imaging Science, 12 (2019), 809-838.  doi: 10.1137/18M1227263.

[7]

H. DongD. Zhang and Y. Guo, A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data, Inverse Probl. Imaging, 13 (2019), 177-195.  doi: 10.3934/ipi.2019010.

[8]

P. GaoH. Dong and F. Ma, Inverse scattering via nonlinear integral equations method for a sound-soft crack from phaseless data, Appl. Math., 63 (2018), 149-165.  doi: 10.21136/AM.2018.0154-17.

[9]

O. Ivanyshyn, Shape reconstruction of acoustic obstacles from the modulus of the far field pattern, Inverse Probl. Imaging, 1 (2007), 609-622.  doi: 10.3934/ipi.2007.1.609.

[10]

O. Ivanyshyn and T. Johansson, Nonlinear integral eqaution methods for the reconstruction of an acoustically sound-soft obstacle, J. Integral Equations Appl., 19 (2007), 289-308.  doi: 10.1216/jiea/1190905488.

[11]

O. Ivanyshyn and T. Johansson, Boundary integral eqautions for acoustical inverse sound-soft scattering, J. Inverse Ill-Posed Probl., 16 (2008), 65-78.  doi: 10.1515/jiip.2008.005.

[12]

O. Ivanyshyn and R. Kress, Identification of sound-soft 3D obstacles from phaseless data, Inverse Probl. Imaging, 4 (2010), 131-149.  doi: 10.3934/ipi.2010.4.131.

[13]

X. JiX. Liu and B. Zhang, Target reconstruction with a reference point scatterer using phaseless far field patterns, SIAM J. Imaging Sci., 12 (2019), 372-391.  doi: 10.1137/18M1205789.

[14]

T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern, IMA J. Appl. Math., 72 (2007), 96-112.  doi: 10.1093/imamat/hxl026.

[15]

A. KarageorghisB. T. Johansson and D. Lesnic, The method of fundamental solutions for the identification of a sound-soft obstacle in inverse acoustic scattering, Appl. Numer. Math., 62 (2012), 1767-1780.  doi: 10.1016/j.apnum.2012.05.011.

[16]

M. V. Klibanov, A phaseless inverse scattering problem for the 3-D Helmholtz equation, Inverse Probl. Imaging, 11 (2017), 263-276.  doi: 10.3934/ipi.2017013.

[17]

R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Inverse Probl., 19 (2003), 91-104.  doi: 10.1088/0266-5611/19/6/056.

[18]

R. Kress and W. Rundell, Inverse obstacle scattering with modulus of the far field pattern as data, Inverse Problems in Medical Imaging and Nondestructive Testing, (1997), 75–92.

[19]

K. M. Lee, Shape reconstructions from phaseless data, Eng. Anal. Bound. Elem., 71 (2016), 174-178.  doi: 10.1016/j.enganabound.2016.08.001.

[20]

X. Liu and B. Zhang, Unique determination of a sound-soft ball by the modulus of a single far field datum, J. Math. Anal. Appl., 365 (2010), 619-624.  doi: 10.1016/j.jmaa.2009.11.031.

[21]

X. XuB. Zhang and H. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency, Inverse Probl. Imaging, 14 (2020), 489-510.  doi: 10.3934/ipi.2020023.

[22]

N. Ye and J. Liu, Uniqueness in determining a sound-hard ball with the modulus of a far-field datum, Appl. Anal., 98 (2019), 969-980.  doi: 10.1080/00036811.2017.1408078.

[23]

D. ZhangY. GuoF. Sun and H. Liu, Unique determinations in inverse scattering problems with phaseless near-field measurements, Inverse Probl. Imaging, 14 (2020), 569-582.  doi: 10.3934/ipi.2020026.

[24]

B. Zhang and H. Zhang, Recovering scattering obstacles by multi-frequency phaseless far-field data, J. Comput. Phys., 345 (2017), 58-73.  doi: 10.1016/j.jcp.2017.05.022.

[25]

B. Zhang and H. Zhang, An approximate factorization method for inverse acoustic scattering with phaseless total-field data, SIAM J. Appl. Math., 80 (2020), 2271-2298.  doi: 10.1137/19M1280612.

Figure 1.  The geometry of model problem
Figure 2.  Reconstructions of an apple-shaped domain with $ 1\% $ noise and $ \epsilon = 0.008 $
Figure 3.  Reconstructions of an apple-shaped domain with $ 5\% $ noise and $ \epsilon = 0.023 $
Figure 4.  Reconstructions of an apple-shaped domain with different initial guesses for $ 1\% $ noise. The source location is $ z_0 = (-1.80, 1.15) $ and (a) $ \epsilon = 0.009 $, (b) $ \epsilon = 0.008 $
Figure 5.  Reconstructions of an apple-shaped domain with different source locations for $ 1\% $ noise. The initial guess is $ (c_1^{(0)}, c_2^{(0)}) = (-0.65, -0.15), r^{(0)} = 0.2 $
Figure 6.  Reconstructions of a peanut-shaped domain with $ 1\% $ noise and $ \epsilon = 0.015 $
Figure 7.  Reconstructions of a peanut-shaped domain with $ 5\% $ noise and $ \epsilon = 0.02 $
Figure 8.  Reconstructions of a peanut-shaped domain with different initial guesses for $ 1\% $ noise. The source location is $ (-0.01, 1.65) $ and (a) $ \epsilon = 0.01 $, (b) $ \epsilon = 0.009 $
Figure 9.  Reconstructions of a peanut-shaped domain with different source locations for $ 1\% $ noise. The initial guess is $ (c_1^{(0)}, c_2^{(0)}) = (0.65, 0.6) $, $ r^{(0)} = 0.2 $
Figure 10.  Reconstructions of an apple-shaped domain with $ 1\% $ noise and $ \epsilon = 0.06 $
Figure 11.  Reconstructions of an apple-shaped domain with $ 5\% $ noise and $ \epsilon = 0.06 $
Figure 12.  Reconstructions of an apple-shaped domain with different initial guesses for $ 1\% $ noise. The source location is $ z_0 = (-1.50, 1.85) $ and (a) $ \epsilon = 0.055 $, (b) $ \epsilon = 0.048 $
Figure 13.  Reconstructions of an apple-shaped domain with different source locations and $ 1\% $ noise. The initial guess $ (c_1^{(0)}, c_2^{(0)}) = (-0.85, 0.01), r^{(0)} = 0.37 $
Figure 14.  Reconstructions of a peanut-shaped domain with $ 1\% $ noise and $ \epsilon = 0.05 $
Figure 15.  Reconstructions of a peanut-shaped domain with $ 5\% $ noise and $ \epsilon = 0.05 $
Figure 16.  Reconstructions of a peanut-shaped domain with different initial guess for $ 1\% $ noise. The source location is $ (-0.01, 1.05) $ and $ \epsilon = 0.05 $
Figure 17.  Reconstructions of a peanut-shaped domain with different source location $ z_0 $ for $ 1\% $ noise. The initial guess is $ (c_1^{(0)}, c_2^{(0)}) = (-0.55, -0.65), r^{(0)} = 0.2 $
Table 1.  Parametrization of the exact boundary curves
Type Parametrization
apple-shaped $ p_D(t)= \frac{0.55(1+0.9\cos{t}+0.1\sin{2t})}{1+0.75\cos{t}}(\cos{t}, \sin{t}), \quad t\in [0, 2\pi] $
peanut-shaped $ p_D(t)=0.25\sqrt{3\cos^2{t}+1}(\cos{t}, \sin{t}), \quad t\in[0, 2\pi] $
Type Parametrization
apple-shaped $ p_D(t)= \frac{0.55(1+0.9\cos{t}+0.1\sin{2t})}{1+0.75\cos{t}}(\cos{t}, \sin{t}), \quad t\in [0, 2\pi] $
peanut-shaped $ p_D(t)=0.25\sqrt{3\cos^2{t}+1}(\cos{t}, \sin{t}), \quad t\in[0, 2\pi] $
[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[3]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[4]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[5]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[6]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems and Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[7]

Heping Dong, Deyue Zhang, Yukun Guo. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Problems and Imaging, 2019, 13 (1) : 177-195. doi: 10.3934/ipi.2019010

[8]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[9]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[10]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems and Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[11]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[12]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems and Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[13]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055

[14]

Deyue Zhang, Yukun Guo. Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, 2021, 29 (2) : 2149-2165. doi: 10.3934/era.2020110

[15]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems and Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[16]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[17]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems and Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[18]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems and Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[19]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems and Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[20]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (191)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]