[1]
|
The National Lung Screening Trial (NLST), https://cdas.cancer.gov/nlst/.
|
[2]
|
Open Access Biomedical Image Search Engine, https://openi.nlm.nih.gov/.
|
[3]
|
G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag and A. V. Dalca, VoxelMorph: A learning framework for deformable medical image registration, IEEE Transactions on Medical Imaging, 38 (2019), 1788-1800.
doi: 10.1109/TMI.2019.2897538.
|
[4]
|
V. Balntas, E. Johns, L. Tang and K. Mikolajczyk, PN-Net: Conjoined triple deep network for learning local image descriptors, Preprint, arXiv: 1601.05030.
|
[5]
|
M. F. Beg, M. I. Miller, A. Trouvé and L. Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, International Journal of Computer Vision, 61 (2005), 139-157.
doi: 10.1023/B:VISI.0000043755.93987.aa.
|
[6]
|
F. L. Bookstein, Principal warps: Thin-plate splines and the decomposition of deformations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), 567-585.
doi: 10.1109/34.24792.
|
[7]
|
L. G. Brown, A survey of image registration techniques, ACM Computing Surveys (CSUR), 24 (1992), 325-376.
doi: 10.1145/146370.146374.
|
[8]
|
G. P. T. Choi, H. L. Chan, R. Yong, S. Ranjitkar, A. Brook, G. Townsend, K. Chen and L. M. Lui, Tooth morphometry using quasi-conformal theory, Pattern Recognition, 99 (2020), 107064.
doi: 10.1016/j.patcog.2019.107064.
|
[9]
|
G. P. T. Choi, Y. Leung-Liu, X. Gu and L. M. Lui, Parallelizable global conformal parameterization of simply-connected surfaces via partial welding, SIAM J. Imaging Sci., 13 (2020), 1049-1083.
doi: 10.1137/19M125337X.
|
[10]
|
G. P. T. Choi, Y. Liu and L. M. Lui, Free-boundary conformal parameterization of point clouds, J. Sci. Comput., 90 (2022), Paper No. 14, 26 pp.
doi: 10.1007/s10915-021-01641-6.
|
[11]
|
G. P.-T. Choi and L. M. Lui, A linear formulation for disk conformal parameterization of simply-connected open surfaces, Adv. Comput. Math., 44 (2018), 87-114.
doi: 10.1007/s10444-017-9536-x.
|
[12]
|
G. P. T. Choi, D. Qiu and L. M. Lui, Shape analysis via inconsistent surface registration, Proc. A., 476 (2020), 20200147, 21 pp.
doi: 10.1098/rspa.2020.0147.
|
[13]
|
P. T. Choi, K. C. Lam and L. M. Lui, FLASH: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces, SIAM J. Imaging Sci., 8 (2015), 67-94.
doi: 10.1137/130950008.
|
[14]
|
P. T. Choi and L. M. Lui, Fast disk conformal parameterization of simply-connected open surfaces, J. Sci. Comput., 65 (2015), 1065-1090.
doi: 10.1007/s10915-015-9998-2.
|
[15]
|
Z. Daoping and K. Chen, 3D orientation-preserving variational models for accurate image registration, SIAM J. Imaging Sci., 13 (2020), 1653-1691.
doi: 10.1137/20M1320006.
|
[16]
|
B. D. de Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti, M. Staring and I. Išgum, A deep learning framework for unsupervised affine and deformable image registration, Medical Image Analysis, 52 (2019), 128-143.
|
[17]
|
F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, 76, American Mathematical Society, 2000.
doi: 10.1090/surv/076.
|
[18]
|
B. Glocker, Drop - Deformable registration using discrete optimization, http://campar.in.tum.de/Main/Drop.
|
[19]
|
B. Glocker, A. Sotiras, N. Komodakis and N. Paragios, Deformable medical image registration: Setting the state of the art with discrete methods, Annual Review of Biomedical Engineering, 13 (2011), 219-244.
doi: 10.1146/annurev-bioeng-071910-124649.
|
[20]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org.
|
[21]
|
X. Han, T. Leung, Y. Jia, R. Sukthankar and A. C. Berg, MatchNet: Unifying feature and metric learning for patch-based matching, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2015), 3279–3286.
|
[22]
|
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770–778.
doi: 10.1109/CVPR.2016.90.
|
[23]
|
B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.
doi: 10.1016/0004-3702(81)90024-2.
|
[24]
|
G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, Densely connected convolutional networks, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 4700–4708.
doi: 10.1109/CVPR.2017.243.
|
[25]
|
M. Jahrer, M. Grabner and H. Bischof, Learned local descriptors for recognition and matching, In Computer Vision Winter Workshop, 2 (2008).
|
[26]
|
F. Jia, J. Liu and X.-C. Tai, A regularized convolutional neural network for semantic image segmentation, Anal. Appl., 19 (2021), 147-165.
doi: 10.1142/S0219530519410148.
|
[27]
|
H. J. Johnson and G. E. Christensen, Consistent landmark and intensity-based image registration, IEEE Transactions on Medical Imaging, 21 (2002), 450-461.
doi: 10.1109/TMI.2002.1009381.
|
[28]
|
S. C. Joshi and M. I. Miller, Landmark matching via large deformation diffeomorphisms, IEEE Transactions on Image Processing, 9 (2000), 1357-1370.
doi: 10.1109/83.855431.
|
[29]
|
S. Klein and M. Staring, Elastix: A toolbox for rigid and nonrigid registration of images, https://elastix.lumc.nl/.
|
[30]
|
S. Klein, M. Staring, K. Murphy, M. A. Viergever and J. P. Pluim, Elastix: A toolbox for intensity-based medical image registration, IEEE Transactions on Medical Imaging, 29 (2010), 196-205.
doi: 10.1109/TMI.2009.2035616.
|
[31]
|
D.-J. Kroon, Multimodality non-rigid demon algorithm image registration, MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration.
|
[32]
|
D. Kuang, Cycle-consistent training for reducing negative jacobian determinant in deep registration networks, In International Workshop on Simulation and Synthesis in Medical Imaging, Springer, 11827 (2019), 120–129.
doi: 10.1007/978-3-030-32778-1_13.
|
[33]
|
D. Kuang and T. Schmah, FAIM–a ConvNet method for unsupervised 3D medical image registration, In International Workshop on Machine Learning in Medical Imaging, Springer, 11861 (2019), 646–654.
doi: 10.1007/978-3-030-32692-0_74.
|
[34]
|
K. C. Lam and L. M. Lui, Landmark- and intensity-based registration with large deformations via quasi-conformal maps, SIAM J. Imaging Sci., 7 (2014), 2364-2392.
doi: 10.1137/130943406.
|
[35]
|
Y. T. Lee, K. C. Lam and L. M. Lui, Landmark-matching transformation with large deformation via n-dimensional quasi-conformal maps, J. Sci. Comput., 67 (2016), 926-954.
doi: 10.1007/s10915-015-0113-5.
|
[36]
|
O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, vol. 126, 2$^{nd}$ edition, Springer-Verlag Berlin Heidelberg, 1973.
|
[37]
|
H. Lombaert, Diffeomorphic log demons image registration, MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/39194-diffeomorphic-log-demons-image-registration.
|
[38]
|
J. B. A. Maintz and M. A. Viergever, A survey of medical image registration, Medical Image Analysis, 2 (1998), 1-36.
doi: 10.1016/S1361-8415(01)80026-8.
|
[39]
|
T. W. Meng, G. P.-T. Choi and L. M. Lui, TEMPO: Feature-endowed Teichmüller extremal mappings of point clouds, SIAM J. Imaging Sci., 9 (2016), 1922-1962.
doi: 10.1137/15M1049117.
|
[40]
|
J. Modersitzki, FAIR: Flexible Algorithms for Image Registration, SIAM, 2009.
doi: 10.1137/1.9780898718843.
|
[41]
|
I. Rocco, R. Arandjelovic and J. Sivic, Convolutional neural network architecture for geometric matching, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 6148–6157.
doi: 10.1109/CVPR.2017.12.
|
[42]
|
E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua and F. Moreno-Noguer, Discriminative learning of deep convolutional feature point descriptors, In Proceedings of the IEEE International Conference on Computer Vision, (2015), 118–126.
doi: 10.1109/ICCV.2015.22.
|
[43]
|
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, Preprint, arXiv: 1409.1556.
|
[44]
|
S. Sommer, Segframe image registration, https://github.com/nefan/segframe.
|
[45]
|
A. Sotiras, C. Davatzikos and N. Paragios, Deformable medical image registration: A survey, IEEE Transactions on Medical Imaging, 32 (2013), 1153-1190.
doi: 10.1109/TMI.2013.2265603.
|
[46]
|
J.-P. Thirion, Image matching as a diffusion process: An analogy with Maxwell's demons, Medical Image Analysis, 2 (1998), 243-260.
doi: 10.1016/S1361-8415(98)80022-4.
|
[47]
|
T. Vercauteren, X. Pennec, A. Perchant and N. Ayache, Diffeomorphic demons: Efficient non-parametric image registration, NeuroImage, 45 (2009), 61-72.
doi: 10.1016/j.neuroimage.2008.10.040.
|
[48]
|
H. Wang, L. Dong, J. O'Daniel, R. Mohan, A. S. Garden, K. K. Ang, D. A. Kuban, M. Bonnen, J. Y. Chang and R. Cheung, Validation of an accelerated 'Demons' algorithm for deformable image registration in radiation therapy, Physics in Medicine & Biology, 50 (2005), 2887.
doi: 10.1088/0031-9155/50/12/011.
|
[49]
|
X. Yang, R. Kwitt, M. Styner and M. Niethammer, Quicksilver: Fast predictive image registration–a deep learning approach, NeuroImage, 158 (2017), 378-396.
doi: 10.1016/j.neuroimage.2017.07.008.
|
[50]
|
C. P. Yung, G. P. T. Choi, K. Chen and L. M. Lui, Efficient feature-based image registration by mapping sparsified surfaces, Journal of Visual Communication and Image Representation, 55 (2018), 561-571.
doi: 10.1016/j.jvcir.2018.07.005.
|
[51]
|
S. Zagoruyko and N. Komodakis, Learning to compare image patches via convolutional neural networks, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2015), 4353–4361.
doi: 10.1109/CVPR.2015.7299064.
|
[52]
|
B. Zitova and J. Flusser, Image registration methods: A survey, Image and Vision Computing, 21 (2003), 977-1000.
doi: 10.1016/S0262-8856(03)00137-9.
|