doi: 10.3934/ipi.2022015
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Direct sampling methods for isotropic and anisotropic scatterers with point source measurements

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

2. 

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

*Corresponding author: Isaac Harris

Received  July 2021 Revised  January 2022 Early access April 2022

Fund Project: The author I. Harris is supported in part by the NSF DMS grant 2107891 and the author D.-L. Nguyen is supported in part by the NSF DMS grant 1812693

In this paper, we consider the inverse scattering problem for recovering either an isotropic or anisotropic scatterer from the measured scattered field initiated by a point source. We propose two new imaging functionals for solving the inverse problem. The first one employs a 'far-field' transform to the data which we then use to derive and provide an explicit decay rate for the imaging functional. In order to analyze the behavior of this imaging functional we use the factorization of the near field operator as well as the Funk-Hecke integral identity. For the second imaging functional the Cauchy data is used to define the functional and its behavior is analyzed using the Green's identities. Numerical experiments are given in two dimensions for both isotropic and anisotropic scatterers.

Citation: Isaac Harris, Dinh-Liem Nguyen, Thi-Phong Nguyen. Direct sampling methods for isotropic and anisotropic scatterers with point source measurements. Inverse Problems and Imaging, doi: 10.3934/ipi.2022015
References:
[1]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.

[2]

F. CakoniH. Haddar and A. Lechleiter, On the factorization method for a far field inverse scattering in the time domain, SIAM J. Math. Anal., 51 (2019), 854-872.  doi: 10.1137/18M1214809.

[3]

J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Problems, 29 (2015), 085005, 17 pp. doi: 10.1088/0266-5611/29/8/085005.

[4]

Y.-T. ChowF. Han and J. Zou, A direct sampling method for simultaneously recovering inhomogeneous inclusions of different nature, SIAM J. Sci. Comput., 43 (2021), A2161-A2189.  doi: 10.1137/20M133628X.

[5]

Y.-T. ChowK. ItoK. Liu and J. Zou, Direct sampling method for diffusive optical tomography, SIAM J. Sci. Comput., 37 (2015), A1658-A1684.  doi: 10.1137/14097519X.

[6]

Y.-T. Chow, K. Ito and J. Zou, A direct sampling method for electrical impedance tomography, Inverse Problems, 30 (2014), 095003, 25 pp. doi: 10.1088/0266-5611/30/9/095003.

[7]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Third edition, Applied Mathematical Sciences, 93. Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.

[8]

L. C. Evans, Partial Differential Equation, Second edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[9]

J. Guo, G. Nakamura and H. Wang, The factorization method for recovering cavities in a heat conductor, preprint, (2019), arXiv: 1912.11590.

[10]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, J. Comput. Appl. Math., 116 (2000), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.

[11]

I. Harris and A. Kleefeld., Analysis of new direct sampling indicators for far-field measurements, Inverse Problems, 35 (2019), 054002, 18 pp. doi: 10.1088/1361-6420/ab08be.

[12]

I. Harris and D.-L. Nguyen, Orthogonality sampling method for the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 42 (2020), B722-B737.  doi: 10.1137/19M129783X.

[13]

I. Harris and S. Rome, Near field imaging of small isotropic and extended anisotropic scatterers, Applicable Analysis, 96 (2017), 1713-1736.  doi: 10.1080/00036811.2017.1284312.

[14]

G. Hu, J. Yang, B. Zhang and H. Zhang, Near-field imaging of scattering obstacles with the factorization method, Inverse Problems, 30 (2014), 095005, 25 pp. doi: 10.1088/0266-5611/30/9/095005.

[15]

K. ItoB. Jin and J. Zou, A two-stage method for inverse medium scattering, J. Comput. Phys., 237 (2013), 211-223.  doi: 10.1016/j.jcp.2012.12.004.

[16]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003, 11 pp. doi: 10.1088/0266-5611/28/2/025003.

[17]

K. Ito, B. Jin and J. Zou, A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29 (2013), 095018, 19 pp. doi: 10.1088/0266-5611/29/9/095018.

[18]

S. KangM. LambertC. Y. AhnT. Ha and W.-K. Park, Single- and multi-frequency direct sampling methods in a limited-aperture inverse scattering problem, IEEE Access, 8 (2020), 121637-121649.  doi: 10.1109/ACCESS.2020.3006341.

[19]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.  doi: 10.1088/0266-5611/14/6/009.

[20]

A. Kirsch, The factorization method for Maxwell's equations, Inverse Problems, 20 (2004), S117-S134.  doi: 10.1088/0266-5611/20/6/S08.

[21]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications, 36. Oxford University Press, Oxford, 2008.

[22]

A. Lechleiter and D.-L. Nguyen, A trigonometric Galerkin method for volume integral equations arising in TM grating scattering, Advances in Comput. Math., 40 (2014), 1-25.  doi: 10.1007/s10444-013-9295-2.

[23]

K. H. Leem, J. Liu and G. Pelekanos, Two direct factorization methods for inverse scattering problems, Inverse Problems, 34 (2018), 125004, 26 pp. doi: 10.1088/1361-6420/aae15e.

[24]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Problems and Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.

[25]

X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011, 20 pp. doi: 10.1088/1361-6420/aa777d.

[26]

X. Liu and J. Sun, Data recovery in inverse scattering: From limited-aperture to full-aperture, Journal of Computational Physics, 386 (2019), 350-364.  doi: 10.1016/j.jcp.2018.10.036.

[27] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[28]

S. Meng, H. Haddar and F. Cakoni., The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20 pp. doi: 10.1088/0266-5611/30/4/045008.

[29]

D.-L. Nguyen, Direct and inverse electromagnetic scattering problems for bi-anisotropic media, Inverse Problems, 35 (2019), 124001, 27 pp. doi: 10.1088/1361-6420/ab382d.

[30]

R. Potthast, A study on orthogonality sampling, Inverse Problems, 26 (2010), 074015.  doi: 10.1088/0266-5611/26/7/074015.

[31]

Asymptotic Expansions for Large Order, Digital Library of Mathematical Functions, NIST, 2021, Available from: https://dlmf.nist.gov/10.19.

show all references

References:
[1]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.

[2]

F. CakoniH. Haddar and A. Lechleiter, On the factorization method for a far field inverse scattering in the time domain, SIAM J. Math. Anal., 51 (2019), 854-872.  doi: 10.1137/18M1214809.

[3]

J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Problems, 29 (2015), 085005, 17 pp. doi: 10.1088/0266-5611/29/8/085005.

[4]

Y.-T. ChowF. Han and J. Zou, A direct sampling method for simultaneously recovering inhomogeneous inclusions of different nature, SIAM J. Sci. Comput., 43 (2021), A2161-A2189.  doi: 10.1137/20M133628X.

[5]

Y.-T. ChowK. ItoK. Liu and J. Zou, Direct sampling method for diffusive optical tomography, SIAM J. Sci. Comput., 37 (2015), A1658-A1684.  doi: 10.1137/14097519X.

[6]

Y.-T. Chow, K. Ito and J. Zou, A direct sampling method for electrical impedance tomography, Inverse Problems, 30 (2014), 095003, 25 pp. doi: 10.1088/0266-5611/30/9/095003.

[7]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Third edition, Applied Mathematical Sciences, 93. Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.

[8]

L. C. Evans, Partial Differential Equation, Second edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[9]

J. Guo, G. Nakamura and H. Wang, The factorization method for recovering cavities in a heat conductor, preprint, (2019), arXiv: 1912.11590.

[10]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, J. Comput. Appl. Math., 116 (2000), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.

[11]

I. Harris and A. Kleefeld., Analysis of new direct sampling indicators for far-field measurements, Inverse Problems, 35 (2019), 054002, 18 pp. doi: 10.1088/1361-6420/ab08be.

[12]

I. Harris and D.-L. Nguyen, Orthogonality sampling method for the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 42 (2020), B722-B737.  doi: 10.1137/19M129783X.

[13]

I. Harris and S. Rome, Near field imaging of small isotropic and extended anisotropic scatterers, Applicable Analysis, 96 (2017), 1713-1736.  doi: 10.1080/00036811.2017.1284312.

[14]

G. Hu, J. Yang, B. Zhang and H. Zhang, Near-field imaging of scattering obstacles with the factorization method, Inverse Problems, 30 (2014), 095005, 25 pp. doi: 10.1088/0266-5611/30/9/095005.

[15]

K. ItoB. Jin and J. Zou, A two-stage method for inverse medium scattering, J. Comput. Phys., 237 (2013), 211-223.  doi: 10.1016/j.jcp.2012.12.004.

[16]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003, 11 pp. doi: 10.1088/0266-5611/28/2/025003.

[17]

K. Ito, B. Jin and J. Zou, A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29 (2013), 095018, 19 pp. doi: 10.1088/0266-5611/29/9/095018.

[18]

S. KangM. LambertC. Y. AhnT. Ha and W.-K. Park, Single- and multi-frequency direct sampling methods in a limited-aperture inverse scattering problem, IEEE Access, 8 (2020), 121637-121649.  doi: 10.1109/ACCESS.2020.3006341.

[19]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.  doi: 10.1088/0266-5611/14/6/009.

[20]

A. Kirsch, The factorization method for Maxwell's equations, Inverse Problems, 20 (2004), S117-S134.  doi: 10.1088/0266-5611/20/6/S08.

[21]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications, 36. Oxford University Press, Oxford, 2008.

[22]

A. Lechleiter and D.-L. Nguyen, A trigonometric Galerkin method for volume integral equations arising in TM grating scattering, Advances in Comput. Math., 40 (2014), 1-25.  doi: 10.1007/s10444-013-9295-2.

[23]

K. H. Leem, J. Liu and G. Pelekanos, Two direct factorization methods for inverse scattering problems, Inverse Problems, 34 (2018), 125004, 26 pp. doi: 10.1088/1361-6420/aae15e.

[24]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Problems and Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.

[25]

X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011, 20 pp. doi: 10.1088/1361-6420/aa777d.

[26]

X. Liu and J. Sun, Data recovery in inverse scattering: From limited-aperture to full-aperture, Journal of Computational Physics, 386 (2019), 350-364.  doi: 10.1016/j.jcp.2018.10.036.

[27] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[28]

S. Meng, H. Haddar and F. Cakoni., The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20 pp. doi: 10.1088/0266-5611/30/4/045008.

[29]

D.-L. Nguyen, Direct and inverse electromagnetic scattering problems for bi-anisotropic media, Inverse Problems, 35 (2019), 124001, 27 pp. doi: 10.1088/1361-6420/ab382d.

[30]

R. Potthast, A study on orthogonality sampling, Inverse Problems, 26 (2010), 074015.  doi: 10.1088/0266-5611/26/7/074015.

[31]

Asymptotic Expansions for Large Order, Digital Library of Mathematical Functions, NIST, 2021, Available from: https://dlmf.nist.gov/10.19.

Figure 1.  The exact geometry of the scatterer(s)
Figure 2.  The reconstruction of the kite-shaped scatterer $ D $ where the boundary $ \partial D = $kite by the direct sampling method with 'Far-Field' transformation
Figure 3.  The reconstruction of the kite-shaped scatterer $ D $ where the boundary $ \partial D = $kite by the direct sampling method with Cauchy data
Figure 4.  The reconstruction of the scatterer with two disjoint components $ \partial D = {\rm{disk}} \cup {\rm{rectangle}} $ by the direct sampling method with 'Far-Field' transformation
Figure 5.  The reconstruction of the scatterer with two disjoint components $ \partial D = {\rm{disk}} \cup {\rm{rectangle}} $ by the direct sampling method with Cauchy data
Figure 6.  The reconstruction of the scatterer with three disjoint components $ \partial D = {\rm{kite}} \cup {\rm{ellipse}} \cup {\rm{peanut}} $ by the direct sampling method with 'Far-Field' transformation
Figure 7.  The reconstruction of the scatterer with two disjoint components $ \partial D = {\rm{kite}} \cup {\rm{ellipse}} \cup {\rm{peanut}} $ by the direct sampling method with Cauchy data
Figure 8.  The reconstruction of the kite shaped scatterer by the direct sampling method with 'Far-Field' transformation for different amounts of measurements
Figure 9.  The reconstruction of the kite shaped scatterer by the direct sampling method with Cauchy data for different amounts of measurements
Figure 10.  The reconstruction of the kite shaped scatterer when there are more receivers than sources with 25 receivers
Figure 11.  The reconstruction of the kite shaped scatterer by the direct sampling method with 'Far-Field' transformation for different wave numbers $ k $
Figure 12.  The reconstruction of the kite shaped scatterer by the direct sampling method with Cauchy data for different wave numbers $ k $
Figure 13.  The reconstruction of the kite shaped scatterer by the direct sampling method with Cauchy data for different values of parameter $ \rho $
[1]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[2]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[3]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[4]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[5]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[6]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[7]

Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563

[8]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[9]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[10]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[11]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[12]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[13]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[14]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[15]

Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022050

[16]

Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems and Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189

[17]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, 2022, 16 (4) : 997-1017. doi: 10.3934/ipi.2022009

[18]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems and Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024

[19]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[20]

Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems and Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465

2021 Impact Factor: 1.483

Article outline

Figures and Tables

[Back to Top]