We consider the reconstruction of the support of an unknown perturbation to a known conductivity coefficient in Calderón's problem. In a previous result by the authors on monotonicity-based reconstruction, the perturbed coefficient is allowed to simultaneously take the values $ 0 $ and $ \infty $ in some parts of the domain and values bounded away from $ 0 $ and $ \infty $ elsewhere. We generalise this result by allowing the unknown coefficient to be the restriction of an $ A_2 $-Muckenhoupt weight in parts of the domain, thereby including singular and degenerate behaviour in the governing equation. In particular, the coefficient may tend to $ 0 $ and $ \infty $ in a controlled manner, which goes beyond the standard setting of Calderón's problem. Our main result constructively characterises the outer shape of the support of such a general perturbation, based on a local Neumann-to-Dirichlet map defined on an open subset of the domain boundary.
Citation: |
[1] |
K. Astala, M. Lassas and L. Päivärinta, The borderlines of invisibility and visibility in Calderón's inverse problem, Anal. PDE, 9 (2016), 43-98.
doi: 10.2140/apde.2016.9.43.![]() ![]() ![]() |
[2] |
L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.
doi: 10.1088/0266-5611/18/6/201.![]() ![]() ![]() |
[3] |
L. Borcea, Addendum to "Electrical impedance tomography", Inverse Problems, 19 (2003), 997-998.
doi: 10.1088/0266-5611/19/4/501.![]() ![]() ![]() |
[4] |
V. Candiani, J. Dardé, H. Garde and N. Hyvönen, Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography, SIAM J. Math. Anal., 52 (2020), 6234-6259.
doi: 10.1137/19M1299219.![]() ![]() ![]() |
[5] |
C. Cârstea and J. N. Wang, Uniqueness for the two dimensional Calderón's problem with unbounded conductivities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 1459-1482.
![]() ![]() |
[6] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.
doi: 10.1137/S0036144598333613.![]() ![]() ![]() |
[7] |
P. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.
![]() ![]() |
[8] |
I. Drelichman and R. G. Durán, Improved Poincaré inequalities with weights, J. Math. Anal. Appl., 347 (2008), 286-293.
doi: 10.1016/j.jmaa.2008.06.005.![]() ![]() ![]() |
[9] |
R. G. Durán and F. L. García, Solutions of the divergence and analysis of the Stokes equations in planar Hölder-$\alpha$ domains, Math. Models Methods Appl. Sci., 20 (2010), 95-120.
doi: 10.1142/S0218202510004167.![]() ![]() ![]() |
[10] |
A. C. Esposito, L. Faella, G. Piscitelli, R. Prakash and A. Tamburrino, Monotonicity Principle in tomography of nonlinear conducting materials, Inverse Problems, 37 (2021), Article ID 045012, 25 pp.
doi: 10.1088/1361-6420/abd29a.![]() ![]() ![]() |
[11] |
E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. PDE, 7 (1982), 77-116.
doi: 10.1080/03605308208820218.![]() ![]() ![]() |
[12] |
H. Garde, Reconstruction of piecewise constant layered conductivities in electrical impedance tomography, Comm. Partial Differential Equations, 45 (2020), 1118-1133.
doi: 10.1080/03605302.2020.1760884.![]() ![]() ![]() |
[13] |
H. Garde and S. Staboulis, Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography, Numer. Math., 135 (2017), 1221-1251.
doi: 10.1007/s00211-016-0830-1.![]() ![]() ![]() |
[14] |
H. Garde and S. Staboulis, The regularized monotonicity method: Detecting irregular indefinite inclusions, Inverse Probl. Imag., 13 (2019), 93-116.
doi: 10.3934/ipi.2019006.![]() ![]() ![]() |
[15] |
G. Grubb, Distributions and Operators, Springer, New York, 2009.
![]() ![]() |
[16] |
B. Harrach, Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Problems, 35 (2019), Article ID 024005, 19 pp.
doi: 10.1088/1361-6420/aaf6fc.![]() ![]() ![]() |
[17] |
B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518.
doi: 10.1137/090773970.![]() ![]() ![]() |
[18] |
B. Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography, SIAM J. Math. Anal., 45 (2013), 3382-3403.
doi: 10.1137/120886984.![]() ![]() ![]() |
[19] |
B. Harrach and M. Ullrich, Resolution guarantees in electrical impedance tomography, IEEE T. Med. Imaging, 34 (2015), 1513-1521.
doi: 10.1109/TMI.2015.2404133.![]() ![]() |
[20] |
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Inc., Mineola, NY, 2006.
![]() ![]() |
[21] |
M. Ikehata, Size estimation of inclusion, J. Inverse Ill-Posed Probl., 6 (1998), 127-140.
doi: 10.1515/jiip.1998.6.2.127.![]() ![]() ![]() |
[22] |
H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: Stability and estimation of size, SIAM J. Math. Anal., 28 (1997), 1389-1405.
doi: 10.1137/S0036141096299375.![]() ![]() ![]() |
[23] |
A. Nachman, I. Regev and D. Tataru, A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey-Stewartson equation and to the inverse boundary value problem of Calderón, Invent. Math., 220 (2020), 395-451.
doi: 10.1007/s00222-019-00930-0.![]() ![]() ![]() |
[24] |
A. Tamburrino and G. Rubinacci, A new non-iterative inversion method for electrical resistance tomography, Inverse Problems, 18 (2002), 1809-1829.
doi: 10.1088/0266-5611/18/6/323.![]() ![]() ![]() |
[25] |
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), Article ID 123011, 39 pp.
doi: 10.1088/0266-5611/25/12/123011.![]() ![]() ![]() |