[1]
|
L. Ardizzone, J. Kruse, C. Rother and U. Köthe, Analyzing inverse problems with invertible neural networks, In International Conference on Learning Representations, 2019, https://openreview.net/forum?id=rJed6j0cKX.
|
[2]
|
M. Asim, M. Daniels, O. Leong, A. Ahmed and P. Hand, Invertible generative models for inverse problems: Mitigating representation error and dataset bias, In Proceedings of the 37th International Conference on Machine Learning, (eds. H. D. Ⅲ and A. Singh), Proceedings of Machine Learning Research, PMLR, 119 (2020), 399–409.
|
[3]
|
A. Beskos, M. Girolami, S. Lan, P. E. Farrell and A. M. Stuart, Geometric MCMC for infinite-dimensional inverse problems, J. Comput. Phys., 335 (2017), 327-351.
doi: 10.1016/j.jcp.2016.12.041.
|
[4]
|
H. Bölcskei, P. Grohs, G. Kutyniok and P. Petersen, Optimal approximation with sparsely connected deep neural networks, SIAM J. Math. Data Sci., 1 (2019), 8-45.
doi: 10.1137/18M118709X.
|
[5]
|
S. Borak, W. Härdle and R. Weron, Stable distributions, 21–44, Statistical Tools for Finance and Insurance, (2005), 21–44.
doi: 10.1007/3-540-27395-6_1.
|
[6]
|
T. Bui-Thanh, O. Ghattas, J. Martin and G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems part Ⅰ: The linearized case, with application to global seismic inversion, SIAM J. Sci. Comput., 35 (2013), 2494-2523.
doi: 10.1137/12089586X.
|
[7]
|
N. K. Chada, S. Lasanen and L. Roininen, Posterior convergence analysis of $\alpha$-stable sheets, 2019, arXiv: 1907.03086.
|
[8]
|
N. K. Chada, L. Roininen and J. Suuronen, Cauchy markov random field priors for Bayesian inversion, Stat. Comput., 32 (2022), 33.
doi: 10.1007/s11222-022-10089-z.
|
[9]
|
A. Chambolle, M. Novaga, D. Cremers and T. Pock, An introduction to total variation for image analysis, In Theoretical Foundations and Numerical Methods for Sparse Recovery, 2010.
|
[10]
|
V. Chen, M. M. Dunlop, O. Papaspiliopoulos and A. M. Stuart, Dimension-robust MCMC in Bayesian inverse problems, 2019, arXiv: 1803.03344.
|
[11]
|
S. L. Cotter, M. Dashti and A. M. Stuart, Approximation of Bayesian inverse problems for PDEs, SIAM J. Numer. Anal., 48 (2010), 322-345.
doi: 10.1137/090770734.
|
[12]
|
S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White, MCMC methods for functions: Modifying old algorithms to make them faster, Statist. Sci., 28 (2013), 424-446.
doi: 10.1214/13-STS421.
|
[13]
|
M. Dashti, S. Harris and A. Stuart, Besov priors for Bayesian inverse problems, Inverse Probl. Imaging, 6 (2012), 183-200.
doi: 10.3934/ipi.2012.6.183.
|
[14]
|
A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner and Z. Ghahramani, Gaussian process behaviour in wide deep neural networks, In International Conference on Learning Representations, 2018, https://openreview.net/forum?id=H1-nGgWC-.
|
[15]
|
R. Der and D. Lee, Beyond Gaussian processes: On the distributions of infinite networks, In Advances in Neural Information Processing Systems, (eds. Y. Weiss, B. Schölkopf and J. C. Platt), MIT Press, (2006), 275–282, http://papers.nips.cc/paper/2869-beyond-gaussian-processes-on-the-distributions-of-infinite-networks.pdf.
|
[16]
|
J. N. Franklin, Well-posed stochastic extensions of ill-posed linear problems, J. Math. Anal. Appl., 31 (1970), 682-716.
doi: 10.1016/0022-247X(70)90017-X.
|
[17]
|
B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley Publishing Co., Inc., Cambridge, Mass., 1954.
|
[18]
|
G. González, V. Kolehmainen and A. Seppänen, Isotropic and anisotropic total variation regularization in electrical impedance tomography, Comput. Math. Appl., 74 (2017), 564-576.
doi: 10.1016/j.camwa.2017.05.004.
|
[19]
|
M. Hairer, A. M. Stuart and S. J. Vollmer, Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions, Ann. Appl. Probab., 24 (2014), 2455-2490.
doi: 10.1214/13-AAP982.
|
[20]
|
A. Immer, M. Korzepa and M. Bauer, Improving predictions of Bayesian neural nets via local linearization, In AISTATS, (2021), 703–711, http://proceedings.mlr.press/v130/immer21a.html.
|
[21]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005, https://cds.cern.ch/record/1338003.
|
[22]
|
J. Kaipio and E. Somersalo, Statistical inverse problems: Discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198 (2007), 493-504.
doi: 10.1016/j.cam.2005.09.027.
|
[23]
|
B. Lakshminarayanan, A. Pritzel and C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, (2017), 6405–6416.
|
[24]
|
M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, 3 (2009), 87-122.
doi: 10.3934/ipi.2009.3.87.
|
[25]
|
M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563.
doi: 10.1088/0266-5611/20/5/013.
|
[26]
|
M. Markkanen, L. Roininen, J. M. J. Huttunen and S. Lasanen, Cauchy difference priors for edge-preserving Bayesian inversion, J. Inverse Ill-Posed Probl., 27 (2019), 225-240.
doi: 10.1515/jiip-2017-0048.
|
[27]
|
R. M. Neal, Priors for infinite networks, Bayesian Learning for Neural Networks, 118 (1996), 29-53.
doi: 10.1007/978-1-4612-0745-0_2.
|
[28]
|
J. Nocedal and S. J. Wright, Numerical Optimization, 2$^{nd}$ edition, Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006.
|
[29]
|
R. Rahaman and A. H. Thiery, Uncertainty quantification and deep ensembles, 2020, arXiv: 2007.08792.
|
[30]
|
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), MIT Press, Cambridge, MA, 2006.
|
[31]
|
V. K. Rohatgi, An Introduction to Probability and Statistics, Wiley, New York, 1976.
|
[32]
|
C. Schillings, B. Sprungk and P. Wacker, On the convergence of the Laplace approximation and noise-level-robustness of Laplace-based Monte Carlo methods for Bayesian inverse problems, Numer. Math., 145 (2020), 915-971.
doi: 10.1007/s00211-020-01131-1.
|
[33]
|
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061.
|
[34]
|
T. J. Sullivan, Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors, Inverse Probl. Imaging, 11 (2017), 857-874.
doi: 10.3934/ipi.2017040.
|
[35]
|
C. K. I. Williams, Computing with infinite networks, In Proceedings of the 9th International Conference on Neural Information Processing Systems, NIPS'96, MIT Press, Cambridge, MA, USA, (1996), 295–301.
|
[36]
|
Z.-H. Zhou, J. Wu and W. Tang, Ensembling neural networks: Many could be better than all, Artificial Intelligence, 137 (2002), 239-263.
doi: 10.1016/S0004-3702(02)00190-X.
|