• Previous Article
    Source identification problems for abstract semilinear nonlocal differential equations
  • IPI Home
  • This Issue
  • Next Article
    Uniqueness of the partial travel time representation of a compact Riemannian manifold with strictly convex boundary
October  2022, 16(5): 1359-1387. doi: 10.3934/ipi.2022029

On multiple scattering in Compton scattering tomography and its impact on fan-beam CT

1. 

Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Mathematics, Germany

2. 

University of Stuttgart, Department of Mathematics, Germany

*Corresponding author: Lorenz Kuger

Received  July 2021 Revised  February 2022 Published  October 2022 Early access  June 2022

The recent development of energy-resolving scintillation crystals opens the way to new types of applications and imaging systems. In the context of computerized tomography (CT), it enables to use the energy as a dimension of information supplementing the source and detector positions. It is then crucial to relate the energy measurements to the properties of Compton scattering, the dominant interaction between photons and matter. An appropriate model of the spectral data leads to the concept of Compton scattering tomography (CST). Multiple-order scattering constitutes the major difficulty of CST. It is, in general, impossible to know how many times a photon was scattered before being measured. In the literature, this nature of the spectral data has often been eluded by considering only the first-order scattering in models of the spectral data. This consideration, however, does not represent the reality as second- and higher-order scattering are a substantial part of the spectral measurement. In this work, we propose to tackle this difficulty by an analysis of the spectral data in terms of modeling and mapping properties. Due to the complexity of the multiple order scattering, we model and study the second-order scattering and extend the results to the higher orders by conjecture. The study ends up with a general reconstruction strategy based on the variations of the spectral data which is illustrated by simulations on a joint CST-CT fan beam scanner. We further show how the method can be extended to high energetic polychromatic radiation sources.

Citation: Lorenz Kuger, Gaël Rigaud. On multiple scattering in Compton scattering tomography and its impact on fan-beam CT. Inverse Problems and Imaging, 2022, 16 (5) : 1359-1387. doi: 10.3934/ipi.2022029
References:
[1]

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229.  doi: 10.1088/0266-5611/10/6/003.

[2]

A. AlmansaC. BallesterV. Caselles and G. Haro, A TV based restoration model with local constraints, Journal of Scientific Computing, 34 (2008), 209-236.  doi: 10.1007/s10915-007-9160-x.

[3]

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker and K. Olsen, Xcom: Photon cross sections database, NIST, URL http://physics.nist.gov/xcom, Accessed: 2020-09-05.

[4]

L. BratemanA. M. Jacobs and L. T. Fitzgerald, Compton scatter axial tomography with x-rays: SCAT-CAT, Physics in Medicine and Biology, 29 (1984), 1353-1370.  doi: 10.1088/0031-9155/29/11/004.

[5]

M. Burger and S. Osher, A guide to the TV zoo, in Level Set and PDE-Based Reconstruction Methods in Imaging, Lecture Notes in Mathematics, 2013, 1–70. doi: 10.1007/978-3-319-01712-9_1.

[6]

J. CebeiroC. TarpauM. A. MorvidoneD. Rubio and M. K. Nguyen, On a three-dimensional compton scattering tomography system with fixed source, Inverse Problems, 37 (2021), 054001.  doi: 10.1088/1361-6420/abf0f0.

[7]

R. L. Clarke and G. Van Dyk, A new method for measurement of bone mineral content using both transmitted and scattered beams of gamma-rays, Physics in Medicine and Biology, 18 (1973), 532-539.  doi: 10.1088/0031-9155/18/4/005.

[8]

B. L. Evans, J. B. Martin, L. W. Burggraf and M. C. Roggemann, Nondestructive inspection using compton scatter tomography, in 1997 IEEE Nuclear Science Symposium Conference Record, vol. 1, 1997,386–390.

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80. Springer Boston, 1984. doi: 10.1007/978-1-4684-9486-0.

[10]

A. Greenleaf and A. Seeger, Oscillatory and fourier integral operators with degenerate canonical relations, Publicacions Matematiques, (2002), 93–141. doi: 10.5565/PUBLMAT_Esco02_05.

[11]

J. Gödeke and G. Rigaud, Imaging based on compton scattering: Model-uncertainty and data-driven reconstruction methods, 2022.

[12]

B. Hahn, Reconstruction of dynamic objects with affine deformations in computerized tomography, Journal of Inverse and Ill-posed Problems, 22 (2014), 323-339.  doi: 10.1515/jip-2012-0094.

[13]

B. N. Hahn and M.-L. Kienle Garrido, An efficient reconstruction approach for a class of dynamic imaging operators, Inverse Problems, 35 (2019), 094005, 26 pp. doi: 10.1088/1361-6420/ab178b.

[14]

L. Hörmander, Fourier integral operators. I, Acta Math., 127 (1971), 79-183.  doi: 10.1007/BF02392052.

[15]

N. KanematsuT. Inaniwa and M. Nakao, Modeling of body tissues for monte carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems, Physics in Medicine and Biology, 61 (2016), 5037-5050.  doi: 10.1088/0031-9155/61/13/5037.

[16]

O. Klein and Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Zeitschrift Für Physik, 52 (1929), 853-868.  doi: 10.1007/BF01366453.

[17]

V. P. Krishnan and E. T. Quinto, Microlocal Analysis in Tomography, 847–902, Springer New York, New York, NY, 2015.

[18]

P. KuchmentK. Lancaster and L. Mogilevskaya, On local tomography, Inverse Problems, 11 (1995), 571-589.  doi: 10.1088/0266-5611/11/3/006.

[19]

P. G. Lale, The examination of internal tissues, using gamma-ray scatter with a possible extension to megavoltage radiography, Physics in Medicine and Biology, 4 (1959), 159-167.  doi: 10.1088/0031-9155/4/2/305.

[20]

C. Leroy and P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, World Scientific, Singapore, 2011. doi: 10.1142/8200.

[21]

F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898719284.

[22]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, Society for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898718324.

[23]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for compton scattering tomography, Inverse Problems, 26 (2010), 065005.  doi: 10.1088/0266-5611/26/6/065005.

[24]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.

[25]

V. P. Palamodov, An analytic reconstruction for the compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004.  doi: 10.1088/0266-5611/27/12/125004.

[26]

G. Rigaud, 3D Compton scattering imaging with multiple scattering: Analysis by FIO and contour reconstruction, Inverse Problems, 37 (2021), Paper No. 064001, 39 pp. doi: 10.1088/1361-6420/abf22b.

[27]

G. Rigaud, Compton scattering tomography: Feature reconstruction and rotation-free modality, SIAM Journal on Imaging Sciences, 10 (2017), 2217-2249.  doi: 10.1137/17M1120105.

[28]

G. Rigaud and B. N. Hahn, 3d compton scattering imaging and contour reconstruction for a class of radon transforms, Inverse Problems, 34 (2018), 075004.  doi: 10.1088/1361-6420/aabf0b.

[29]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.

[30]

P. C. Shrimpton, Electron density values of various human tissues: In vitro compton scatter measurements and calculated ranges, Physics in Medicine and Biology, 26 (1981), 907-911.  doi: 10.1088/0031-9155/26/5/010.

[31]

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, 53 (2008), 4777-4807.  doi: 10.1088/0031-9155/53/17/021.

[32]

J. P. StonestromR. E. Alvarez and A. Macovski, A framework for spectral artifact corrections in x-ray ct, IEEE Transactions on Biomedical Engineering, BME-28 (1981), 128-141.  doi: 10.1109/TBME.1981.324786.

[33]

A. C. Tanner and I. R. Epstein, Multiple scattering in the Compton effect. I. Analytic treatment of angular distributions and total scattering probabilities, Phys. Rev. A, 13 (1976), 335-348.  doi: 10.1103/PhysRevA.13.335.

[34]

A. C. Tanner and I. R. Epstein, Multiple scattering in the Compton effect. II. Analytic and numerical treatment of energy profiles, Phys. Rev. A, 14 (1976), 313-327.  doi: 10.1103/PhysRevA.14.313.

[35]

A. C. Tanner and I. R. Epstein, Multiple scattering in the Compton effect. III. Monte Carlo calculations, Phys. Rev. A, 14 (1976), 328-340.  doi: 10.1103/PhysRevA.14.328.

[36]

C. Tarpau, J. Cebeiro, M. K. Nguyen, G. Rollet and L. Dumas, On the design of a cst system and its extension to a bi-imaging modality, 2020.

[37]

T. T. Truong and M. K. Nguyen, Recent Developments on Compton Scatter Tomography: Theory and Numerical Simulations, Intech, 2012. doi: 10.5772/50012.

[38]

T. T. TruongM. K. Nguyen and H. Zaidi, The mathematical foundations of 3d compton scatter emission imaging, International Journal of Biomedical Imaging, 2007 (2007), 092780.  doi: 10.1155/2007/92780.

[39]

J. WangZ. Chi and Y. Wang, Analytic reconstruction of compton scattering tomography, Journal of Applied Physics, 86 (1999), 1693-1698.  doi: 10.1063/1.370949.

[40]

J. WangT. LiH. Lu and Z. Liang, Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography, IEEE Transactions on Medical Imaging, 25 (2006), 1272-1283.  doi: 10.1109/TMI.2006.882141.

[41]

J. Webber, X-ray compton scattering tomography, Inverse Problems in Science and Engineering, 24 (2016), 1323-1346.  doi: 10.1080/17415977.2015.1104307.

[42]

J. Webber and E. L. Miller, Compton scattering tomography in translational geometries, Inverse Problems, 36 (2020), 025007.  doi: 10.1088/1361-6420/ab4a32.

[43]

J. W. Webber and E. T. Quinto, Microlocal analysis of a Compton tomography problem, SIAM J. Imaging Sci., 13 (2020), 746-774.  doi: 10.1137/19M1251035.

[44]

J. W. Webber and S. Holman, Microlocal analysis of a spindle transform, Inverse Problems & Imaging, 13 (2019), 231-261.  doi: 10.3934/ipi.2019013.

[45]

J. W. Webber and W. R. B. Lionheart, Three dimensional compton scattering tomography, Inverse Problems, 34 (2018), 084001.  doi: 10.1088/1361-6420/aac51e.

[46]

Z. ZhuK. WahidP. BabynD. CooperI. Pratt and Y. Carter, Improved compressed sensing-based algorithm for sparse-view ct image reconstruction, Computational and Mathematical Methods in Medicine, 2013 (2013), 185750.  doi: 10.1155/2013/185750.

show all references

References:
[1]

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229.  doi: 10.1088/0266-5611/10/6/003.

[2]

A. AlmansaC. BallesterV. Caselles and G. Haro, A TV based restoration model with local constraints, Journal of Scientific Computing, 34 (2008), 209-236.  doi: 10.1007/s10915-007-9160-x.

[3]

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker and K. Olsen, Xcom: Photon cross sections database, NIST, URL http://physics.nist.gov/xcom, Accessed: 2020-09-05.

[4]

L. BratemanA. M. Jacobs and L. T. Fitzgerald, Compton scatter axial tomography with x-rays: SCAT-CAT, Physics in Medicine and Biology, 29 (1984), 1353-1370.  doi: 10.1088/0031-9155/29/11/004.

[5]

M. Burger and S. Osher, A guide to the TV zoo, in Level Set and PDE-Based Reconstruction Methods in Imaging, Lecture Notes in Mathematics, 2013, 1–70. doi: 10.1007/978-3-319-01712-9_1.

[6]

J. CebeiroC. TarpauM. A. MorvidoneD. Rubio and M. K. Nguyen, On a three-dimensional compton scattering tomography system with fixed source, Inverse Problems, 37 (2021), 054001.  doi: 10.1088/1361-6420/abf0f0.

[7]

R. L. Clarke and G. Van Dyk, A new method for measurement of bone mineral content using both transmitted and scattered beams of gamma-rays, Physics in Medicine and Biology, 18 (1973), 532-539.  doi: 10.1088/0031-9155/18/4/005.

[8]

B. L. Evans, J. B. Martin, L. W. Burggraf and M. C. Roggemann, Nondestructive inspection using compton scatter tomography, in 1997 IEEE Nuclear Science Symposium Conference Record, vol. 1, 1997,386–390.

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80. Springer Boston, 1984. doi: 10.1007/978-1-4684-9486-0.

[10]

A. Greenleaf and A. Seeger, Oscillatory and fourier integral operators with degenerate canonical relations, Publicacions Matematiques, (2002), 93–141. doi: 10.5565/PUBLMAT_Esco02_05.

[11]

J. Gödeke and G. Rigaud, Imaging based on compton scattering: Model-uncertainty and data-driven reconstruction methods, 2022.

[12]

B. Hahn, Reconstruction of dynamic objects with affine deformations in computerized tomography, Journal of Inverse and Ill-posed Problems, 22 (2014), 323-339.  doi: 10.1515/jip-2012-0094.

[13]

B. N. Hahn and M.-L. Kienle Garrido, An efficient reconstruction approach for a class of dynamic imaging operators, Inverse Problems, 35 (2019), 094005, 26 pp. doi: 10.1088/1361-6420/ab178b.

[14]

L. Hörmander, Fourier integral operators. I, Acta Math., 127 (1971), 79-183.  doi: 10.1007/BF02392052.

[15]

N. KanematsuT. Inaniwa and M. Nakao, Modeling of body tissues for monte carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems, Physics in Medicine and Biology, 61 (2016), 5037-5050.  doi: 10.1088/0031-9155/61/13/5037.

[16]

O. Klein and Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Zeitschrift Für Physik, 52 (1929), 853-868.  doi: 10.1007/BF01366453.

[17]

V. P. Krishnan and E. T. Quinto, Microlocal Analysis in Tomography, 847–902, Springer New York, New York, NY, 2015.

[18]

P. KuchmentK. Lancaster and L. Mogilevskaya, On local tomography, Inverse Problems, 11 (1995), 571-589.  doi: 10.1088/0266-5611/11/3/006.

[19]

P. G. Lale, The examination of internal tissues, using gamma-ray scatter with a possible extension to megavoltage radiography, Physics in Medicine and Biology, 4 (1959), 159-167.  doi: 10.1088/0031-9155/4/2/305.

[20]

C. Leroy and P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, World Scientific, Singapore, 2011. doi: 10.1142/8200.

[21]

F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898719284.

[22]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, Society for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898718324.

[23]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for compton scattering tomography, Inverse Problems, 26 (2010), 065005.  doi: 10.1088/0266-5611/26/6/065005.

[24]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.

[25]

V. P. Palamodov, An analytic reconstruction for the compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004.  doi: 10.1088/0266-5611/27/12/125004.

[26]

G. Rigaud, 3D Compton scattering imaging with multiple scattering: Analysis by FIO and contour reconstruction, Inverse Problems, 37 (2021), Paper No. 064001, 39 pp. doi: 10.1088/1361-6420/abf22b.

[27]

G. Rigaud, Compton scattering tomography: Feature reconstruction and rotation-free modality, SIAM Journal on Imaging Sciences, 10 (2017), 2217-2249.  doi: 10.1137/17M1120105.

[28]

G. Rigaud and B. N. Hahn, 3d compton scattering imaging and contour reconstruction for a class of radon transforms, Inverse Problems, 34 (2018), 075004.  doi: 10.1088/1361-6420/aabf0b.

[29]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.

[30]

P. C. Shrimpton, Electron density values of various human tissues: In vitro compton scatter measurements and calculated ranges, Physics in Medicine and Biology, 26 (1981), 907-911.  doi: 10.1088/0031-9155/26/5/010.

[31]

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, 53 (2008), 4777-4807.  doi: 10.1088/0031-9155/53/17/021.

[32]

J. P. StonestromR. E. Alvarez and A. Macovski, A framework for spectral artifact corrections in x-ray ct, IEEE Transactions on Biomedical Engineering, BME-28 (1981), 128-141.  doi: 10.1109/TBME.1981.324786.

[33]

A. C. Tanner and I. R. Epstein, Multiple scattering in the Compton effect. I. Analytic treatment of angular distributions and total scattering probabilities, Phys. Rev. A, 13 (1976), 335-348.  doi: 10.1103/PhysRevA.13.335.

[34]

A. C. Tanner and I. R. Epstein, Multiple scattering in the Compton effect. II. Analytic and numerical treatment of energy profiles, Phys. Rev. A, 14 (1976), 313-327.  doi: 10.1103/PhysRevA.14.313.

[35]

A. C. Tanner and I. R. Epstein, Multiple scattering in the Compton effect. III. Monte Carlo calculations, Phys. Rev. A, 14 (1976), 328-340.  doi: 10.1103/PhysRevA.14.328.

[36]

C. Tarpau, J. Cebeiro, M. K. Nguyen, G. Rollet and L. Dumas, On the design of a cst system and its extension to a bi-imaging modality, 2020.

[37]

T. T. Truong and M. K. Nguyen, Recent Developments on Compton Scatter Tomography: Theory and Numerical Simulations, Intech, 2012. doi: 10.5772/50012.

[38]

T. T. TruongM. K. Nguyen and H. Zaidi, The mathematical foundations of 3d compton scatter emission imaging, International Journal of Biomedical Imaging, 2007 (2007), 092780.  doi: 10.1155/2007/92780.

[39]

J. WangZ. Chi and Y. Wang, Analytic reconstruction of compton scattering tomography, Journal of Applied Physics, 86 (1999), 1693-1698.  doi: 10.1063/1.370949.

[40]

J. WangT. LiH. Lu and Z. Liang, Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography, IEEE Transactions on Medical Imaging, 25 (2006), 1272-1283.  doi: 10.1109/TMI.2006.882141.

[41]

J. Webber, X-ray compton scattering tomography, Inverse Problems in Science and Engineering, 24 (2016), 1323-1346.  doi: 10.1080/17415977.2015.1104307.

[42]

J. Webber and E. L. Miller, Compton scattering tomography in translational geometries, Inverse Problems, 36 (2020), 025007.  doi: 10.1088/1361-6420/ab4a32.

[43]

J. W. Webber and E. T. Quinto, Microlocal analysis of a Compton tomography problem, SIAM J. Imaging Sci., 13 (2020), 746-774.  doi: 10.1137/19M1251035.

[44]

J. W. Webber and S. Holman, Microlocal analysis of a spindle transform, Inverse Problems & Imaging, 13 (2019), 231-261.  doi: 10.3934/ipi.2019013.

[45]

J. W. Webber and W. R. B. Lionheart, Three dimensional compton scattering tomography, Inverse Problems, 34 (2018), 084001.  doi: 10.1088/1361-6420/aac51e.

[46]

Z. ZhuK. WahidP. BabynD. CooperI. Pratt and Y. Carter, Improved compressed sensing-based algorithm for sparse-view ct image reconstruction, Computational and Mathematical Methods in Medicine, 2013 (2013), 185750.  doi: 10.1155/2013/185750.

Figure 1.  Illustration of the differential cross-section for the Compton effect
Figure 2.  Geometry of the first order scattering (fig. 2a) for a human thorax phantom (fig. 2b)
Figure 3.  Top: Illustrations of the data $ g_1 $ in 3a and $ g_1+g_2 $ in 3b. $ g_2 $ alters the structure of the measured spectrum by adding large components not seen in $ g_1 $. The plot in 3c shows the measured spectrum for a fixed detector, corresponding to the row designated by $ {\bf{d}} $ in the left two illustrations. Bottom: Reconstructions of the electron density of a thorax phantom (ground truth in 3d) using as forward model only $ \mathcal{T}_1 $ and data $ \text{Pois}(g_1) $ (3e) or $ \text{Pois}(g_1+g_2) $ (3f). Note how details of small size or lower contrast like the spine are badly imaged in the second setting
Figure 4.  Geometry of the second order scattering
Figure 5.  Contribution of $ g_1 $ and $ g_2 $ to the measured spectra of two small disks
Figure 6.  For the thorax phantom and $ E_0 = 1.173 $ MeV, we depict the data of a single source-detector pair to show how the differential operator influences the data. Left: unprocessed data, right: the data after applying $ D_E^\gamma $
Figure 7.  Scanning of the object for 8 angular views
Figure 8.  (8a): Ground truth phantom. (8d): prior reconstruction from sparse data CT step eq. (24). (8b) and (8e): Solutions of problem eq. (25), $ \lambda = 0 $ in (8b) and $ \lambda > 0 $ tuned in (8e). (8c) and (8f): Solutions of problem eq. (26) with TV parameters $ \lambda = 0 $ (least-squares fit) in (8c) and $ \lambda > 0 $ tuned by the L-curve method in (8f)
Figure 9.  (9a): The second phantom with an aluminium ring. (9d): prior reconstruction from sparse data CT step eq. (24). (9b) and (9e): Solutions of problem eq. (25) with $ \lambda = 0 $ (9b) and $ \lambda > 0 $ tuned (9e). (9c) and (9f): Solutions of problem eq. (26) with $ \lambda = 0 $ (least-squares fit) in (9c) and $ \lambda > 0 $ tuned in (9f)
Figure 10.  (10a): The second phantom, now with an iron ring. (10d): prior reconstruction from sparse data CT step eq. (24). (10b) and (10e): Solutions of problem eq. (25) with $ \lambda = 0 $ in (10b) and $ \lambda > 0 $ tuned in (10e). (10c) and (10f): Solutions of problem eq. (26) with TV parameters $ \lambda = 0 $ (least-squares fit) in (10c) and $ \lambda > 0 $ tuned in (10f)
Figure 11.  (11a): Ground truth phantom. (11b) and (11c): Solution of eq. (26) with $ \lambda = 0 $ in (11b) (least-squares fit) and $ \lambda > 0 $ tuned in (11c)
Figure 12.  Results for the aluminium object (12a): Ground truth phantom. (12b) and (12c): Solution of eq. (26) with $ \lambda = 0 $ in (12b) (least-squares fit) and $ \lambda > 0 $ tuned in (12c)
[1]

Cécilia Tarpau, Javier Cebeiro, Geneviève Rollet, Maï K. Nguyen, Laurent Dumas. Analytical reconstruction formula with efficient implementation for a modality of Compton scattering tomography with translational geometry. Inverse Problems and Imaging, 2022, 16 (4) : 771-786. doi: 10.3934/ipi.2021075

[2]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems and Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[3]

James W. Webber, Eric L. Miller. Bragg scattering tomography. Inverse Problems and Imaging, 2021, 15 (4) : 683-721. doi: 10.3934/ipi.2021010

[4]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems and Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[5]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems and Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[6]

Yan Liu, Wuwei Ren, Habib Ammari. Robust reconstruction of fluorescence molecular tomography with an optimized illumination pattern. Inverse Problems and Imaging, 2020, 14 (3) : 535-568. doi: 10.3934/ipi.2020025

[7]

Li Shen, Eric Todd Quinto, Shiqiang Wang, Ming Jiang. Simultaneous reconstruction and segmentation with the Mumford-Shah functional for electron tomography. Inverse Problems and Imaging, 2018, 12 (6) : 1343-1364. doi: 10.3934/ipi.2018056

[8]

Meghdoot Mozumder, Tanja Tarvainen, Simon Arridge, Jari P. Kaipio, Cosimo D'Andrea, Ville Kolehmainen. Approximate marginalization of absorption and scattering in fluorescence diffuse optical tomography. Inverse Problems and Imaging, 2016, 10 (1) : 227-246. doi: 10.3934/ipi.2016.10.227

[9]

Rasmus Backholm, Tatiana A. Bubba, Camille Bélanger-Champagne, Tapio Helin, Peter Dendooven, Samuli Siltanen. Simultaneous reconstruction of emission and attenuation in passive gamma emission tomography of spent nuclear fuel. Inverse Problems and Imaging, 2020, 14 (2) : 317-337. doi: 10.3934/ipi.2020014

[10]

Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495

[11]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[12]

Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems and Imaging, 2015, 9 (2) : 579-589. doi: 10.3934/ipi.2015.9.579

[13]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems and Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[14]

Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems and Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051

[15]

Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems and Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527

[16]

Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems and Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665

[17]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems and Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[18]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[19]

Benjamin P. Russo, Rushikesh Kamalapurkar, Dongsik Chang, Joel A. Rosenfeld. Motion tomography via occupation kernels. Journal of Computational Dynamics, 2022, 9 (1) : 27-45. doi: 10.3934/jcd.2021026

[20]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems and Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (80)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]