[1]
|
A. Beskos, A. Jasra, K. Law, R. Tempone and Y. Zhou, Multilevel sequential Monte Carlo samplers, Stochastic Process. Appl., 127 (2017), 1417-1440.
doi: 10.1016/j.spa.2016.08.004.
|
[2]
|
D. Blömker, K. Law, A. M. Stuart and K. C. Zygalakis, Accuracy and stability of the continuous-time 3DVAR filter for the Navier-Stokes equation, Nonlinearity, 26 (2013), 2193-2219.
doi: 10.1088/0951-7715/26/8/2193.
|
[3]
|
C. E. A. Brett, K. F. Lam, K. J. H. Law, D. S. McCormick, M. R. Scott and A. M. Stuart, Accuracy and stability of filters for dissipative PDEs, Phys. D, 245 (2013), 34-45.
doi: 10.1016/j.physd.2012.11.005.
|
[4]
|
H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), 147-269.
doi: 10.1017/S0962492904000182.
|
[5]
|
S. H. Cheung, T. A. Oliver, E. E. Prudencio, S. Prudhomme and R. D. Moser, Bayesian uncertainty analysis with applications to turbulence modeling, Reliability Engineering & System Safety, 96 (2011), 1137-1149.
|
[6]
|
S. L. Cotter, M. Dashti, J. C. Robinson and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics, Inverse Problems, 25 (2009), 115008, 43 pp.
doi: 10.1088/0266-5611/25/11/115008.
|
[7]
|
J. Dick, M. Feischl and C. Schwab, Improved efficiency of a multi-index FEM for computational uncertainty quantification, SIAM J. Numer. Anal., 57 (2019), 1744-1769.
doi: 10.1137/18M1193700.
|
[8]
|
T. J. Dodwell, C. Ketelsen, R. Scheichl and A. L. Teckentrup, A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 1075-1108.
doi: 10.1137/130915005.
|
[9]
|
Y. Efendiev, B. Jin, M. Presho and X. Tan, Multilevel Markov Chain Monte Carlo method for high-contrast single-phase flow problems, Commun. Comput. Phys., 17 (2015), 259-286.
doi: 10.4208/cicp.021013.260614a.
|
[10]
|
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4355-5.
|
[11]
|
M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), 259-328.
doi: 10.1017/S096249291500001X.
|
[12]
|
M. B. Giles, An introduction to multilevel Monte Carlo methods, Proceedings of the International Congress of Mathematicians, Rio de Janeiro, 2018, 3571–3590.
|
[13]
|
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5.
|
[14]
|
M. Hairer, A. M. Stuart and S. J. Vollmer, Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions, Ann. Appl. Probab., 24 (2014), 2455-2490.
doi: 10.1214/13-AAP982.
|
[15]
|
A.-L. Haji-Ali, F. Nobile and R. Tempone, Multi-index Monte Carlo: When sparsity meets sampling, Numer. Math., 132 (2016), 767-806.
doi: 10.1007/s00211-015-0734-5.
|
[16]
|
Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77 (2008), 2097-2124.
doi: 10.1090/S0025-5718-08-02127-3.
|
[17]
|
J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem Part Ⅳ: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022.
|
[18]
|
V. H. Hoang, Bayesian inverse problems in measure spaces with application to Burgers and Hamilton-Jacobi equations with white noise forcing, Inverse Problems, 28 (2012), 025009, 29 pp.
doi: 10.1088/0266-5611/28/2/025009.
|
[19]
|
V. H. Hoang, K. J. H. Law and A. M. Stuart, Determine white noise forcing from Eulerian observations in the Navier-Stokes equation, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 233-261.
doi: 10.1007/s40072-014-0028-4.
|
[20]
|
V. H. Hoang, J. H. Quek and C. Schwab, Analysis of a multilevel Markov Chain Monte Carlo finite element method for Bayesian inversion of log-normal diffusions, Inverse Problems, 36 (2020), 035021, 46 pp.
doi: 10.1088/1361-6420/ab2a1e.
|
[21]
|
V. H. Hoang, J. H. Quek and C. Schwab, Multilevel Markov chain Monte Carlo for Bayesian inversion of parabolic partial differential equations under Gaussian prior, SIAM/ASA J. Uncertain. Quantif., 9 (2021), 384-419.
doi: 10.1137/20M1354714.
|
[22]
|
V. H. Hoang and C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul., 3 (2004/05), 168-194.
doi: 10.1137/030601077.
|
[23]
|
V. H. Hoang, C. Schwab and A. M. Stuart, Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Problems, 29 (2013), 085010, 37 pp.
doi: 10.1088/0266-5611/29/8/085010.
|
[24]
|
H. Hoel, K. J. H. Law and R. Tempone, Multilevel ensemble Kalman filtering, SIAM J. Numer. Anal., 54 (2016), 1813-1839.
doi: 10.1137/15M100955X.
|
[25]
|
A. Jasra, K. Kamatani, K. J. H. Law and Y. Zhou, A multi-index Markov chain Monte Carlo method, Int. J. Uncertain. Quantif., 8 (2018), 61-73.
doi: 10.1615/Int.J.UncertaintyQuantification.2018021551.
|
[26]
|
V. John, Finite Element Methods for Incompressible Flow Problems, Springer, Cham, 2016.
doi: 10.1007/978-3-319-45750-5.
|
[27]
|
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511802270.
|
[28]
|
K. J. H. Law and A. M. Stuart, Evaluating data assimilation algorithms, Monthly Weather Review, 140 (2012), 3757-3782.
|
[29]
|
M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, Handb. Numer. Anal., VI, North-Holland, Amsterdam, 1998,503–688.
|
[30]
|
M. Nodet, Variational assimilation of Lagrangian data in oceanography, Inverse Problems, 22, 245–263.
|
[31]
|
R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-6557-1.
|
[32]
|
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061.
|
[33]
|
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing, Amsterdam-New York-Oxford, 1977.
|