We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium $ \Omega\subset\mathbb{R}^n $, with $ n\geq 3 $, under the so-called diffusion approximation. Assuming that the scattering coefficient $ \mu_s $ is known, we prove Hölder stability of the derivatives of any order of the absorption coefficient $ \mu_a $ at the boundary $ \partial\Omega $ in terms of the measurements, in the time-harmonic case, where the anisotropic medium $ \Omega $ is interrogated with an input field that is modulated with a fixed harmonic frequency $ \omega = \frac{k}{c} $, where $ c $ is the speed of light and $ k $ is the wave number. The stability estimates are established under suitable conditions that include a range of variability for $ k $ and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:10.1080/00036811.2020.1758314, where a Lipschitz type stability estimate of $ \mu_a $ on $ \partial\Omega $ was established in terms of the measurements.
Citation: |
[1] |
G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations, 84 (1990), 252-272.
doi: 10.1016/0022-0396(90)90078-4.![]() ![]() ![]() |
[2] |
G. Alessandrini, F. Faucher, M. V. de Hoop, R. Gaburro and E. Sincich, Inverse problem for the Helmholtz equation with Cauchy data: Reconstruction with conditional well-posedness driven iterative regularization, ESAIM: Mathematical Modeliing and Numerical Analysis, 53 (2019), 1005-1030.
doi: 10.1051/m2an/2019009.![]() ![]() ![]() |
[3] |
G. Alessandrini, M. V. de Hoop and R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Problems, 33 (2017), 125013.
doi: 10.1088/1361-6420/aa982d.![]() ![]() ![]() |
[4] |
G. Alessandrini, M. V. de Hoop, R. Gaburro and E. Sincich, Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities, Journal de Mathèmatiques Pures et Appliquèes, 107 (2017), 638-664.
doi: 10.1016/j.matpur.2016.10.001.![]() ![]() ![]() |
[5] |
G. Alessandrini, M. V. de Hoop, R. Gaburro and E. Sincich, Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data, Asymptotic Analysis, 108 (2018), 115-149.
doi: 10.3233/ASY-171457.![]() ![]() ![]() |
[6] |
G. Alessandrini, M. V. de Hoop, R. Gaburro and E. Sincich, EIT in a layered anisotropic medium, Inverse Problems and Imaging, 12 (2018), 667-676.
doi: 10.3934/ipi.2018028.![]() ![]() ![]() |
[7] |
G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171.
doi: 10.1137/S0036141000369563.![]() ![]() ![]() |
[8] |
G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936.
doi: 10.1080/03605300903017397.![]() ![]() ![]() |
[9] |
G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Advances in Applied Mathematics, 35 (2005), 207-241.
doi: 10.1016/j.aam.2004.12.002.![]() ![]() ![]() |
[10] |
S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41.
![]() |
[11] |
S. R. Arridge and J. C. Hebden, Optical imaging in medicine Ⅱ: Modelling and reconstruction, Physics in Medicine and Biology, 42 (1997), 841.
doi: 10.1088/0031-9155/42/5/008.![]() ![]() |
[12] |
S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography, Optics Letters, 23 (1998), 882-884.
doi: 10.1364/OL.23.000882.![]() ![]() |
[13] |
S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010.
doi: 10.1088/0266-5611/25/12/123010.![]() ![]() ![]() |
[14] |
E. Beretta, M. De Hoop, F. Faucher and O. Scherzer, Inverse boundary value problem for the Helmholtz equation: Quantitative conditional Lipschitz stability estimates, SIAM J. Math. Anal., 48 (2016), 3962-3983.
doi: 10.1137/15M1043856.![]() ![]() ![]() |
[15] |
E. Beretta, M. V. de Hoop, E. Francini, S. Vessella and J. Zhai, Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves, Inverse Problems, 33 (2017), 035013.
doi: 10.1088/1361-6420/aa5bef.![]() ![]() ![]() |
[16] |
E. Beretta, M. De Hoop and L. Qiu, Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation, SIAM J. Math. Anal., 45 (2013), 679-699.
doi: 10.1137/120869201.![]() ![]() ![]() |
[17] |
E. Beretta, M. V. de Hoop, L. Qiu and O. Scherzer, Inverse boundary value problem for the Helmholtz equation: Multi-level approach and iterative reconstruction, preprint, arXiv: 1406.2391.
doi: 10.1093/imanum/drt033.![]() ![]() ![]() |
[18] |
E. Beretta and E. Francini, Lipschitz stability for the electrical impedance tomography problem: The complex case, Communications in Partial Differential Equations, 36 (2011), 1723-1749.
doi: 10.1080/03605302.2011.552930.![]() ![]() ![]() |
[19] |
E. Beretta, E. Francini, A. Morassi, E. Rosset and S. Vessella, Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: The case of non flat interfaces, Inverse Problems, 30 (2014), 125005.
doi: 10.1088/0266-5611/30/12/125005.![]() ![]() ![]() |
[20] |
E. Beretta, E. Francini and S. Vessella, Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements, Inv. Probl. Imag., 8 (2014), 611-644.
doi: 10.3934/ipi.2014.8.611.![]() ![]() ![]() |
[21] |
D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette and Q. Zhang, Imaging the body with diffuse optical tomography, IEEE signal processing magazine, 18 (2001), 57-75.
doi: 10.1109/79.962278.![]() ![]() |
[22] |
L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), R99-R136.
![]() |
[23] |
A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), 133-138.
![]() ![]() |
[24] |
M. V. de Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Hölder stability and iterative regularization, Inverse Problems, 23 (2012), 045001, 16 pp.
doi: 10.1088/0266-5611/28/4/045001.![]() ![]() ![]() |
[25] |
O. Doeva, R. Gaburro, W. R. B. Lionheart and C. J. Nolan, Lipschitz stability at the boundary for time-harmonic diffuse optical tomography, Applicable Analysis, 101 (2022), 3697-3715.
doi: 10.1080/00036811.2020.1758314.![]() ![]() ![]() |
[26] |
A. Erdely et al., Higher Trascendental Functions, 1, McGraw-Hill, New York, 1953.
![]() ![]() |
[27] |
F. Faucher, G. Alessandrini, H. Barucq, M. V. de Hoop, R. Gaburro and E. Sincich, Full reciprocity-gap waveform inversion enabling sparce-source acquisition, Geophysics, 85 (2020), R461-R476.
![]() |
[28] |
F. Faucher, M. V. de Hoop and O. Scherzer, Reciprocity-gap misfit functional for distributed acoustic sensing, combining data from passive and active sources, Geophysics, 86 (2021).
![]() |
[29] |
S. Foschiatti, R. Gaburro and E. Sincich, Stability for the Calderón's problem for a class of anisotropic conductivities via an ad-hoc misfit functional, Inverse Problems, 37 (2021), 125007.
doi: 10.1088/1361-6420/ac349c.![]() ![]() ![]() |
[30] |
R. Gaburro, Stable determination at the boundary of the optical properties of a medium: The static case, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 407-431.
doi: 10.13137/2464-8728/13204.![]() ![]() ![]() |
[31] |
R. Gaburro and W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Problems, 25 (2009), 045004, 14 pp.
doi: 10.1088/0266-5611/25/4/045004.![]() ![]() ![]() |
[32] |
R. Gaburro and E. Sincich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Problems, 31 (2015), 015008.
doi: 10.1088/0266-5611/31/1/015008.![]() ![]() ![]() |
[33] |
A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Phys. Med. Biol., 50 (2005), R1-R43.
![]() |
[34] |
B. Harrach, On uniqueness in diffuse optical tomography, Inverse Problems, 25 (2009), 055010.
doi: 10.1088/0266-5611/25/5/055010.![]() ![]() ![]() |
[35] |
B. Harrach, Simultaneous determination of the diffusion and absorption coefficient from boundary data, Inverse Problems and Imaging, 6 (2012), 663-679.
doi: 10.3934/ipi.2012.6.663.![]() ![]() ![]() |
[36] |
J. Heino and E. Somersalo, Estimation of optical absorption in anisotropic background, Inverse Problems, 18 (2002), 559.
doi: 10.1088/0266-5611/18/3/304.![]() ![]() ![]() |
[37] |
J. Heino, S. Arridge, J. Sikora and E. Somersalo, Anisotropic effects in highly scattering media, Physical Review E, 68 (2003), 031908.
doi: 10.1103/PhysRevE.68.031908.![]() ![]() |
[38] |
N. Hyvönen, Characterizing inclusions in optical tomography, Inverse Problems, 20 (2004), 737.
doi: 10.1088/0266-5611/20/3/006.![]() ![]() ![]() |
[39] |
J. Kaipio and E. Somersalo, Statistical and computational inverse problems, 160, Springer Science & Business Media, 2006.
![]() ![]() |
[40] |
V. Kolehmainen, M. Vauhkonen, J. P. Kaipio and S. R. Arridge, Recovery of piecewise constant coefficients in optical diffusion tomography, Optic Express, 7 (2000), 468-480.
![]() |
[41] |
R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298.
doi: 10.1002/cpa.3160370302.![]() ![]() ![]() |
[42] |
R. Kohn and M. Vogelius, Determining Conductivity by Boundary Measurements Ⅱ. Interior Results, Comm. Pure. Appl. Math., 38 (1985), 643-667.
doi: 10.1002/cpa.3160380513.![]() ![]() ![]() |
[43] |
V. Isakov, On the uniqueness in the inverse conductivity problem with local data, Inverse Problems and Imaging, 1 (2007), 95-105.
doi: 10.3934/ipi.2007.1.95.![]() ![]() ![]() |
[44] |
A. Nachman, Global uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 142 (1995), 71-96.
doi: 10.2307/2118653.![]() ![]() ![]() |
[45] |
M. Salo, Inverse Problems for Nonsmooth First Order Perturbations of the Laplacian, Ph.D Thesis, University of Helsinki, Helsinki, 2004.
![]() ![]() |
[46] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary valued problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291.![]() ![]() ![]() |
[47] |
T. Tarvainen, V. Kolehmainen, A. Pulkkinen, M. Vauhkonen, M. Schweiger, S. R. Arridge and J. P. Kaipio, An approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography, Inverse Problems, 26 (2009), 015005.
doi: 10.1088/0266-5611/26/1/015005.![]() ![]() ![]() |
[48] |
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011.
doi: 10.1088/0266-5611/25/12/123011.![]() ![]() ![]() |