[1]
|
F. J. Aragón Artacho and M. H. Geoffory, Metric subregularity of the convex subdifferential in Banach spaces, J. Nonlinear Convex Anal., 15 (2014), 35-47.
|
[2]
|
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7.
|
[3]
|
D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, Paris, 1982.
|
[4]
|
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521.
|
[5]
|
K. Bredies, R. Nuster and R. Watschinger, TGV-regularized inversion of the Radon transform for photoacoustic tomography, Biomedical Optics Express, 11 (2020), 994-1019.
doi: 10.1364/BOE.379941.
|
[6]
|
K. Bredies and H. P. Sun, Preconditioned Douglas–Rachford algorithms for TV- and TGV-regularized variational imaging problems, J. Math. Imaging and Vis., 52 (2015), 317-344.
doi: 10.1007/s10851-015-0564-1.
|
[7]
|
K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, Proceedings of SampTA 2011 - 9th International Conference on Sampling Theory and Applications, Singapore, 2011.
|
[8]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging and Vis., 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[9]
|
F. H. Clarke, Optimization and Nonsmooth Analysis, Vol. 5, Classics Appl. Math., SIAM, Philadelphia, 1990.
doi: 10.1137/1.9781611971309.
|
[10]
|
C. Clason, Nonsmooth Analysis and Optimization, Lecture Notes, 2018.
doi: 10.48550/arXiv.1708.04180.
|
[11]
|
Y. Cui, D. Sun and K.-C. Toh, On the R-superlinear convergence of the KKT residues generated by the augmented Lagrangian method for convex composite conic programming, Math. Program., Ser. A, 178 (2019), 381-415.
doi: 10.1007/s10107-018-1300-6.
|
[12]
|
A. L. Dontchev and R. T. Rockafellar, Functions and Solution Mappings: A View from Variational Analysis, Second Edition, Springer Series in Operations Research and Financial Engineering, New York, 2014.
doi: 10.1007/978-1-4939-1037-3.
|
[13]
|
W. J. Duncan, Some devices for the solution of large sets of simultaneous linear equations, Philos. Mag. Ser, 35 (1944), 660-670.
doi: 10.1080/14786444408520897.
|
[14]
|
F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I, Springer-Verlag New York, Inc, 2003.
|
[15]
|
M. Fortin and R. Glowinski (eds.), Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, North-Holland, Amsterdam, 1983.
|
[16]
|
R. Glowinski, S. J. Osher and W. Yin (eds.), Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 2016.
doi: 10.1007/978-3-319-41589-5.
|
[17]
|
L. Guttman, Enlargement methods for computing the inverse matrix, Ann. Math. Statist., 17 (1946), 336-343.
doi: 10.1214/aoms/1177730946.
|
[18]
|
W. W. Hager, Updating the inverse of a matrix, SIAM Review., 31 (1989), 221-239.
doi: 10.1137/1031049.
|
[19]
|
H. V. Henderson and S. R. Searle, On deriving the inverse of a sum of matrices, SIAM Review., 23 (1981), 53-60.
doi: 10.1137/1023004.
|
[20]
|
M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303-320.
doi: 10.1007/BF00927673.
|
[21]
|
M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM J. Appl. Math., 64 (2004), 1311-1333.
doi: 10.1137/S0036139903422784.
|
[22]
|
M. Hintermüller, K. Papafitsoros, C. N. Rautenberg and H. Sun, Dualization and automatic distributed parameter selection of total generalized variation via bilevel optimization, Numerical Functional Analysis and Optimization, 43 (2022), 887-932.
doi: 10.1080/01630563.2022.2069812.
|
[23]
|
M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variaton-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), 1-23.
doi: 10.1137/040613263.
|
[24]
|
A. J. Hoffman, On approximate solutions of systems of linear inequalities, J. Research Nat. Bur. Standards, 49 (1952), 263-265.
doi: 10.6028/jres.049.027.
|
[25]
|
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, 15, Philadelphia, SIAM, 2008.
doi: 10.1137/1.9780898718614.
|
[26]
|
K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation for image restoration, RAIRO, Math. Mod. and Num. Analysis, 33 (1999), 1-21.
doi: 10.1051/m2an:1999102.
|
[27]
|
D. Klatte and B. Kummer, Constrained minima and Lipschitzian penalties in metric spaces, SIAM J. Optim., 13 (2002), 619-633.
doi: 10.1137/S105262340139625X.
|
[28]
|
D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications, (Nonconvex Optimization and Its Applications, 60), Springer, Boston, MA, 2002.
|
[29]
|
F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (TGV) for MRI, Magnetic Resonance in Medicine, 65 (2011), 480-491.
doi: 10.1002/mrm.22595.
|
[30]
|
D. Leventhal, Metric subregularity and the proximal point method, J. Math. Anal. Appl., 360 (2009), 681-688.
doi: 10.1016/j.jmaa.2009.07.012.
|
[31]
|
X. Li, D. Sun and K.-C. Toh, A highly efficient semismooth Newton augmented Lagrangian method for solving lasso problems, SIAM J. Optim., 28 (2018), 433-458.
doi: 10.1137/16M1097572.
|
[32]
|
F. J. Luque, Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control Optim., 22 (1984), 277-293.
doi: 10.1137/0322019.
|
[33]
|
R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim., 15 (1977), 959-972.
doi: 10.1137/0315061.
|
[34]
|
M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, 1968, 283-298.
|
[35]
|
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
doi: 10.1137/0314056.
|
[36]
|
R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97.
|
[37]
|
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimization, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4340-7.
|
[38]
|
G. Stadler, Semismooth Newton and augmented Lagrangian methods for a simplified friction problem, SIAM J. Optim., 15 (2004), 39-62.
doi: 10.1137/S1052623403420833.
|
[39]
|
G. Stadler, Infinite-Dimensional Semi-Smooth Newton and Augmented Lagrangian Methods for Friction and Contact Problems in Elasticity, PhD thesis, University of Graz, 2004.
|
[40]
|
D. Sun and J. Han, Newton and quasi-Newton methods for a class of nonsmooth equations and related problems, SIAM J. Optim., 7 (1997), 463-480.
doi: 10.1137/S1052623494274970.
|
[41]
|
H. Sun, An investigation on semismooth Newton based augmented Lagrangian method for image restoration, J. Sci. Comput., 92 (2022), Paper No. 82, arXiv: 1911.10968, 2019, submitted.
doi: 10.1007/s10915-022-01907-7.
|
[42]
|
M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Series on Optimization, 2011.
doi: 10.1137/1.9781611970692.
|
[43]
|
H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511615115.
|
[44]
|
J. Ye, X. Yuan, S. Zeng and J. Zhang, Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems, Set-Valued and Variational Analysis, 29 (2021), 803-837.
doi: 10.1007/s11228-021-00591-3.
|
[45]
|
F. Zhang (eds.), The Schur Complement and Its Applications, Numerical Methods and Algorithms, 4, Springer US, 2005.
doi: 10.1007/b105056.
|
[46]
|
Y. Zhang, N. Zhang, D. Sun and K.-C. Toh, An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems, Mathematical Programming A, 179 (2020), 223–263.
doi: 10.1007/s10107-018-1329-6.
|
[47]
|
X.-Y. Zhao, D. Sun and K.-C. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM J. Optim., 20 (2010), 1737-1765.
doi: 10.1137/080718206.
|
[48]
|
Z. Zhou and A. Man-Cho So, A unified approach to error bounds for structured convex optimization problems, Math. Program., Ser. A, 165 (2007), 689-728.
doi: 10.1007/s10107-016-1100-9.
|