We show that three sets of internal current densities are the right amount of data that give the existence and the uniqueness at the same time in reconstructing an anisotropic conductivity in two space dimensions. The curl free equation of Faraday's law is taken instead of the usual divergence free equation of the electrical impedance tomography. Boundary conditions related to given current densities are introduced which complete a well determined problem for conductivity reconstruction together with Faraday's law.
Citation: |
[1] |
H. Ammari, Y. Capdeboscq, H. Kang and A. Kozhemyak, Mathematical models and reconstruction methods in magneto-acoustic imaging, Eur. J. Appl. Math., 20 (2009), 303-317.
doi: 10.1017/S0956792509007888.![]() ![]() ![]() |
[2] |
H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lect. Notes Math., 1846, Springer-Verlag, Berlin, 2004.
doi: 10.1007/b98245.![]() ![]() ![]() |
[3] |
G. Bal, Cauchy problem for ultrasound-modulated EIT, Anal. PDE, 6 (2013), 751-775.
doi: 10.2140/apde.2013.6.751.![]() ![]() ![]() |
[4] |
G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Probl. Imaging, 7 (2013), 353-375.
doi: 10.3934/ipi.2013.7.353.![]() ![]() ![]() |
[5] |
G. Bal, C. Guo and F. Monard, Imaging of anisotropic conductivities from current densities in two dimensions, SIAM J. Imaging Sci., 7 (2014), 2538-2557.
doi: 10.1137/140961754.![]() ![]() ![]() |
[6] |
G. Bal, C. Guo and F. Monard, Inverse anisotropic conductivity from internal current densities, Inverse Probl., 30 (2014), 025001.
doi: 10.1088/0266-5611/30/2/025001.![]() ![]() ![]() |
[7] |
P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J., 50 (2001), 747-757.
doi: 10.1512/iumj.2001.50.1832.![]() ![]() ![]() |
[8] |
J. K. Beem, P. E. Ehrlich and K. L. Easley, Global Lorentzian Geometry, 2$^{nd}$ edition, Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker, Inc., New York, 1996.
![]() ![]() |
[9] |
L. Borcea, Electrical impedance tomography, Inverse Probl., 18 (2002), 99-136.
doi: 10.1088/0266-5611/18/6/201.![]() ![]() ![]() |
[10] |
R. Courant and D. Hilbert, Methods of Mathematical Physics vol 2: Partial Differential Equations, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962
![]() ![]() |
[11] |
H. E. Gamba, D. Bayford and D. Holder, Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging, Phys. Med. Biol., 44 (1999), 91-281.
![]() |
[12] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
![]() ![]() |
[13] |
A. Giovanni, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl., 145 (1986), 265-295.
doi: 10.1007/BF01790543.![]() ![]() ![]() |
[14] |
A. Giovanni, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 229-256.
![]() ![]() |
[15] |
N. Hoell, A. Moradifam and A. Nachman, Current density impedance imaging of an anisotropic conductivity in a known conformal class, SIAM J. Math. Anal., 46 (2014), 1820-1842.
doi: 10.1137/130911524.![]() ![]() ![]() |
[16] |
Y. Z. Ider, S. Onart and W. Lionheart, Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT), Physiol. Meas., 24 (2003), 591-604.
![]() |
[17] |
M. L. G. Joy, G. C. Scott and R. M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magn. Reson. Imaging, 7 (1989), 89-94.
![]() |
[18] |
Y.-J. Kim, O. Kwon, J. Seo and E. Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography, Inverse Probl., 19 (2003), 1213-1225.
doi: 10.1088/0266-5611/19/5/312.![]() ![]() ![]() |
[19] |
Y.-J. Kim and M.-G. Lee, Well-posedness of the conductivity reconstruction from an interior current density in terms of schauder theory, Quart. Appl. Math., 73 (2015), 419-433.
doi: 10.1090/qam/1368.![]() ![]() ![]() |
[20] |
O. Kwon, J.-Y. Lee and J.-R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Probl., 18 (2002), 1089-1100.
doi: 10.1088/0266-5611/18/4/310.![]() ![]() ![]() |
[21] |
M.-G. Lee, M.-S. Ko and Y.-J. Kim, Virtual resistive network and conductivity reconstruction with faraday's law, Inverse Probl., 30 (2014), 125009.
doi: 10.1088/0266-5611/30/12/125009.![]() ![]() ![]() |
[22] |
M.-G. Lee, M.-S. Ko and Y.-J. Kim, Orthotropic conductivity reconstruction with virtual-resistive network and faraday's law, Math. Methods Appl. Sci., 39 (2016), 1183-1196.
doi: 10.1002/mma.3564.![]() ![]() ![]() |
[23] |
T. Lee, H. Nam, M.-G. Lee, Y.-J. Kim, E. Woo and O. Kwon, Reconstruction of conductivity using the dual-loop method with one injection current in MREIT, Phys. Med. Biol., 55 (2010), 7523.
![]() |
[24] |
G. H. Meisters and C. Olech, Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J., 30 (1963), 63-80.
![]() ![]() |
[25] |
F. Monard and G. Bal, Inverse anisotropic diffusion from power density measurements in two dimensions, Inverse Probl., 28 (2012), 084001.
doi: 10.1088/0266-5611/28/8/084001.![]() ![]() ![]() |
[26] |
F. Monard and G. Bal, Inverse diffusion problems with redundant internal information, Inverse Probl. Imaging, 6 (2012), 289-313.
doi: 10.3934/ipi.2012.6.289.![]() ![]() ![]() |
[27] |
F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension $n \ge 3$, Commun. Partial. Differ. Equ., 38 (2013), 1183-1207.
doi: 10.1080/03605302.2013.787089.![]() ![]() ![]() |
[28] |
F. Monard and D. Rim, Imaging of isotropic and anisotropic conductivities from power densities in three dimensions, Inverse Probl., 34 (2018), 075005.
doi: 10.1088/1361-6420/aabe5a.![]() ![]() ![]() |
[29] |
A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143 (1996), 71-96.
doi: 10.2307/2118653.![]() ![]() ![]() |
[30] |
A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Probl., 23 (2007), 2551-2563.
doi: 10.1088/0266-5611/23/6/017.![]() ![]() ![]() |
[31] |
A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Probl., 25 (2009), 035014.
doi: 10.1088/0266-5611/25/3/035014.![]() ![]() ![]() |
[32] |
P. W. Nicholson, Specific impedance of cerebral white matter, Exp. Neurol., 13 (1965), 386-401.
![]() |
[33] |
L. Perko, Differential Equations and Dynamical Systems, 3$^{rd}$ edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8.![]() ![]() ![]() |
[34] |
G. R. Richter, An inverse problem for the steady state diffusion equation, SIAM J. Appl. Math., 41 (1981), 210-221.
doi: 10.1137/0141016.![]() ![]() ![]() |
[35] |
G. R. Richter, Numerical identification of a spatially varying diffusion coefficient, Math. Comput., 36 (1981), 375-386.
doi: 10.1090/S0025-5718-1981-0606502-3.![]() ![]() ![]() |
[36] |
B. J. Roth, The Electrical Conductivity of Tissues, in the Biomedical Engineering Handbook, CRC Press, Boca Raton, FL, USA, 2000.
![]() |
[37] |
G. C. Scott, M. L. G. Joy, R. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Trans. Med. Imaging, 10 (1991), 362-74.
![]() |
[38] |
J. Seo and E. Woo, Magnetic resonance electrical impedance tomography (MREIT), SIAM Rev., 53 (2011), 40-68.
![]() |
[39] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169.
doi: 10.2307/1971291.![]() ![]() ![]() |
[40] |
G. Uhlmann, Electrical impedance tomography and calderón's problem, Inverse Probl., 25 (2009), 123011.
doi: 10.1088/0266-5611/25/12/123011.![]() ![]() ![]() |
Configuration of
Causal structure on
An example of a monotone and non-timelike curve that consists of portions of characteristic curves
Configurations for the Goursat problem and the Triangle problem. The red curves are in