In this paper we consider an inverse scattering problem which consists in retrieving obstacles in a partially embedded waveguide in the acoustic case, the measurements being located on the accessible part of the structure. Such accessible part can be considered as a closed waveguide (with a finite cross section), while the embedded part can be considered as an open waveguide (with an infinite cross section). We propose an approximate model of the open waveguide by using Perfectly Matched Layers in order to simplify the resolution of the inverse problem, which is based on a modal formulation of the Linear Sampling Method. Some numerical results show the efficiency of our approach. This paper can be viewed as a continuation of the article [
Citation: |
[1] | T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Probl., 17 (2001), 1445-1464. doi: 10.1088/0266-5611/17/5/314. |
[2] | T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering in a three-dimensional homogeneous planar waveguide, SIAM J. Appl. Math., 71 (2011), 753-772. doi: 10.1137/100806333. |
[3] | T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Probl., 19 (2003), 1195-1211. doi: 10.1088/0266-5611/19/5/311. |
[4] | L. Audibert, A. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643. doi: 10.3934/ipi.2015.9.625. |
[5] | V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: Theory, numerics and experiments, Inverse Probl., 34 (2018), 075006. doi: 10.1088/1361-6420/aac21e. |
[6] | V. Baronian, L. Bourgeois and A. Recoquillay, Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87. doi: 10.1016/j.wavemoti.2016.05.006. |
[7] | J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200. doi: 10.1006/jcph.1994.1159. |
[8] | L. Borcea, F. Cakoni and S. Meng, A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577. doi: 10.1016/j.jcp.2019.04.072. |
[9] | L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Probl., 35 (2019), 124006. doi: 10.1088/1361-6420/ab2c9b. |
[10] | L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Probl., 30 (2014), 095004. doi: 10.1088/0266-5611/30/9/095004. |
[11] | L. Bourgeois, S. Fliss, J.-F. Fritsch, C. Hazard and A. Recoquillay, Scattering in a partially open waveguide: The forward problem, Preprint, October 2021. |
[12] | L. Bourgeois, J.-F. Fritsch and A. Recoquillay, Imaging junctions of waveguides, Inverse Probl. Imaging, 15 (2021), 285-314. doi: 10.3934/ipi.2020065. |
[13] | L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Probl., 27 (2011), 055001. doi: 10.1088/0266-5611/27/5/055001. |
[14] | L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Inverse Problems, 24 (2008), 015018, 20 pp. doi: 10.1088/0266-5611/24/1/015018. |
[15] | L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation, Inverse Probl., 24 (2008), 015018. doi: 10.1088/0266-5611/24/1/015018. |
[16] | L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Probl., 28 (2012), 105011. doi: 10.1088/0266-5611/28/10/105011. |
[17] | L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Probl., 29 (2013), 025017, 19 pp. doi: 10.1088/0266-5611/29/2/025017. |
[18] | F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Probl., 19 (2003), 279-295. doi: 10.1088/0266-5611/19/2/303. |
[19] | F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media, J. Comput. Appl. Math., 146 (2002), 285-299. doi: 10.1016/S0377-0427(02)00361-8. |
[20] | A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, In Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120-127. doi: 10.1142/9789812773197_0013. |
[21] | A. Charalambopoulos, A. Kirsch, K. A. Anagnostopoulos, D. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Probl., 23 (2007), 27-51. doi: 10.1088/0266-5611/23/1/002. |
[22] | D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev., 42 (2000), 369-414. doi: 10.1137/S0036144500367337. |
[23] | D. Colton, H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 24 (2002), 719-731. doi: 10.1137/S1064827501390467. |
[24] | D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Probl., 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003. |
[25] | D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Probl., 13 (1997), 1477-1493. doi: 10.1088/0266-5611/13/6/005. |
[26] | M. Gallezot, Numerical Modelling of Non-Destructive Testing of Buried Waveguides, Theses, École centrale de Nantes, November 2018. |
[27] | P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 22. Masson, Paris; Springer-Verlag, Berlin, 1992. |
[28] | T. Kato, Perturbation Theory For Linear Operators, Springer-Verlag, Berlin, 1995. |
[29] | N. Kielbasiewicz and E. Lunéville, User documentation for xlife++, https://uma.ensta-paris.fr/soft/XLiFE++/var/files/docs/usr/user documentation.pdf, 2021. |
[30] | A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Probl., 14 (1998), 1489-1512. doi: 10.1088/0266-5611/14/6/009. |
[31] | A. Kirsch, The factorization method for Maxwell's equations, Inverse Probl., 20 (2004), 117-134. doi: 10.1088/0266-5611/20/6/S08. |
[32] | V. A. Kondratiev, Boundary-value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., 16 (1967), 209-292. |
[33] | A. Lechleiter and T. Rienmüller, Factorization method for the inverse Stokes problem, Inverse Probl. Imaging, 7 (2013), 1271-1293. doi: 10.3934/ipi.2013.7.1271. |
[34] | P. Monk and V. Selgas, An inverse fluid–solid interaction problem, Inverse Probl. Imaging, 3 (2009), 173-198. doi: 10.3934/ipi.2009.3.173. |
[35] | B. Pavlakovic, M. Lowe and P. Cawley, Prediction of reflection coefficients from defects in embedded bars, In Review of Progress in Quantitative Nondestructive Evaluation, (1999), 207-214. |
[36] | C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716. doi: 10.1137/17M1159051. |
Original configuration
Configuration with PMLs
Choice of the near-field equation. Top left: near-field equation (46). Top right: near-field equation (47). Bottom: wrong near-field equation associated with the uniform closed waveguide
Restriction to
Influence of the distance between the defects and the interface. Left: one obstacle. Right: two obstacles
Impact of the amplitude of noise. Top left: 1% noise. Top right: 10% noise. Bottom: 20% noise
Impact of the frequency. Top left:
One obstacle at least is located in the sheath
Contour