[1]
|
S. Arridge, P. Maass, O. Öktem and C.-B. Schoenlieb, Solving Inverse Problems using data driven methods, Acta Numer., 28 (2019), 1-74.
doi: 10.1017/S0962492919000059.
|
[2]
|
A. Auslender and M. Teboulle, Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities, Math. Prog. Series B, 120 (2009), 27-48.
doi: 10.1007/s10107-007-0147-z.
|
[3]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[4]
|
M. Bertero, P. Boccacci and C. De Mol, Introduction to Inverse Problems in Imaging - 2nd edition, CRC Press, Boca Raton, 2022.
doi: 10.1201/9781003032755.
|
[5]
|
M. Bertero, P. Boccacci and V. Ruggiero, Inverse Imaging with Poisson Data, IOP Publishing, Bristol, 2006.
|
[6]
|
M. Bertero, H. Lantéri and L. Zanni, Iterative image reconstruction: A point of view, in Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT) (eds. Y. Censor, M. Jiang and A. K. Louis), Birkhauser-Verlag, (2008), 37-63.
|
[7]
|
C. Bertocchi, E. Chouzenoux, M.-C. Courbineau, J.-C. Pesquet and M. Prato, Deep unfolding of a proximal interior point method for image restoration, Inverse Probl., 36 (2020), 034005.
doi: 10.1088/1361-6420/ab460a.
|
[8]
|
S. Bonettini, F. Porta, M. Prato, S. Rebegoldi, V. Ruggiero and L. Zanni, Recent advances in variable metric first-order methods, in Computational Methods for Inverse Problems in Imaging, M. Donatelli and S. Serra-Capizzano eds., Springer INdAM Series 36 (2019), 1-31.
doi: 10.1007/978-3-030-32882-5_1.
|
[9]
|
S. Bonettini and M. Prato, New convergence results for the scaled gradient projection method, Inverse Probl., 31 (2015), 095008.
doi: 10.1088/0266-5611/31/9/095008.
|
[10]
|
S. Bonettini, S. Rebegoldi and V. Ruggiero, Inertial variable metric techniques for the inexact forward-backward algorithm, SIAM J. Sci. Comput., 40 (2018), A3180-A3210.
doi: 10.1137/17M116001X.
|
[11]
|
S. Bonettini, R. Zanella and L. Zanni, A scaled gradient projection method for constrained image deblurring, Inverse Probl., 25 (2009), 015002.
doi: 10.1088/0266-5611/25/1/015002.
|
[12]
|
A. Chambolle and Ch. Dossal, On the convergence of the iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm", J. Optim. Theory Appl., 166 (2015), 968-982.
doi: 10.1007/s10957-015-0746-4.
|
[13]
|
Y. Chen and T. Pock, Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 1256-1272.
doi: 10.1109/TPAMI.2016.2596743.
|
[14]
|
Y. Chen, R. Ranftl and T. Pock, Insights into analysis operator learning: From patch-based sparse models to higher order MRFs, IEEE Trans. Image Process., 23 (2014), 1060-1072.
doi: 10.1109/TIP.2014.2299065.
|
[15]
|
J. C. Christou, D. Bonnacini, N. Ageorges and F. Marchis, Myopic deconvolution of adaptive optics images, Messenger, 97 (1999), 14-22.
|
[16]
|
J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau and G. Rousset, Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra, Appl. Optics, 37 (1998), 4614-4622.
doi: 10.1364/AO.37.004614.
|
[17]
|
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511801389.
|
[18]
|
H. Drucker, C. J. Burges, L. Kaufman, A. Smola and V. Vapnik, Support vector regression machines, in Advances in Neural Information Processing Systems, M.C. Mozer, M. Jordan and T. Petsche eds., 9, MIT press, Boston, 1996.
|
[19]
|
F.-L. Fan, J. Xiong, M. Li and G. Wang, On interpretability of artificial neural networks: A survey, IEEE Trans. Radiat. Plasma Med. Sci., 5 (2021), 741-760.
doi: 10.1109/TRPMS.2021.3066428.
|
[20]
|
M. Forte and F. Pitié, F, B, Alpha Matting, preprint, 2012, arXiv: 2003.07711.
|
[21]
|
L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi and M. Pontil, Bilevel programming for hyperparameter optimization and meta-learning, Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, 80, PMLR, 2018, 1568-1577.
|
[22]
|
G. Franchini, V. Ruggiero, F. Porta and L. Zanni, Neural architecture search via standard machine learning methodologies, Math. Eng., 5 (2023), 1-21.
doi: 10.3934/mine.2023012.
|
[23]
|
G. Franchini, V. Ruggiero and L. Zanni, Ritz-like values in steplength selections for stochastic gradient methods, Soft Computing, 24 (2020), 17573-17588.
doi: 10.1007/s00500-020-05219-6.
|
[24]
|
G. Franchini, V. Ruggiero and L. Zanni, Steplength and mini-batch size selection in stochastic gradient methods, LNCS, 12566 (2020), 259-263.
doi: 10.1007/978-3-030-64580-9_22.
|
[25]
|
T. Germer, T Uelwer and S. Harmeling, Deblurring Photographs of Characters Using Deep Neural Networks, preprint, 2022, arXiv: 2205.15053.
|
[26]
|
K. Gregor and Y. LeCun, Learning fast approximations of sparse coding, Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010,399-406.
|
[27]
|
J. R. Hershey, J. Le Roux and F. Weninger, Deep unfolding: Model-based inspiration of novel deep architectures, preprint, 2014, arXiv: 1409.2574.
|
[28]
|
E. Kobler, A. Effland, K. Kunisch and T. Pock, Total deep variation for linear inverse problems, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, 2020, 7549-7558
doi: 10.1109/CVPR42600.2020.00757.
|
[29]
|
E. Kobler, A. Effland, K. Kunisch and T. Pock, Total deep variation: A stable regularization method for inverse problems, to appear, IEEE Trans. Pattern Anal. Mach. Intell.
doi: 10.1109/TPAMI.2021.3124086.
|
[30]
|
B. Kosko, Noise, Viking Press, New York, 2006.
|
[31]
|
O. Kupyn, T. Martyniuk, J. Wu and Z. Wan, DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better, preprint, 2019, arXiv: 1908.03826.
|
[32]
|
K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM J. Imaging Sci., 6 (2013), 938-983.
doi: 10.1137/120882706.
|
[33]
|
A. Levin, Y. Weiss, F. Durand and W. T. Freeman, Understanding blind deconvolution algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), 2354-2367.
doi: 10.1109/TPAMI.2011.148.
|
[34]
|
L. Li, Y. Yan, Z. Lu, J. Wu, K. Gu and S. Wang, No-reference quality assessment of deblurred images based on natural scene statistics, IEEE Access, 5 (2017), 2163-2171.
doi: 10.1109/ACCESS.2017.2661858.
|
[35]
|
V. Monga, Y. Li and Y. C. Eldar, Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing, IEEE Signal Process. Mag., 38 (2021), 18-44.
doi: 10.1109/MSP.2020.3016905.
|
[36]
|
Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), 127-152.
doi: 10.1007/s10107-004-0552-5.
|
[37]
|
P. Ochs and T. Pock, Adaptive FISTA for nonconvex optimization, SIAM J. Optim., 29 (2019), 2482-2503.
doi: 10.1137/17M1156678.
|
[38]
|
P. Ochs, R. Ranftl, T. Brox and T. Pock, Bilevel optimization with nonsmooth lower level problems, Scale Space and Variational Methods in Computer Vision, 2015, Lecture Notes in Computer Science, 9087, Springer, 2015,654-665.
doi: 10.1007/978-3-319-18461-6_52.
|
[39]
|
R. Olaf, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention, 2015, Lecture Notes in Computer Science, 9351, Springer, 2015,234-241.
doi: 10.1007/978-3-319-24574-4_28.
|
[40]
|
D. M. Pelt and J. A. Sethian, A mixed-scale dense convolutional neural network for image analysis, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), 254-259.
doi: 10.1073/pnas.1715832114.
|
[41]
|
N. A. B. Riis, Y. Dong and P. C. Hansen, Computed tomography with view angle estimation using uncertainty quantification, Inverse Probl., 37 (2021), 065007.
doi: 10.1088/1361-6420/abf5ba.
|
[42]
|
Y. Romano, M. Elad and P. Milanfar, The little engine that could: Regularization by denoising (RED), SIAM J. Imaging Sci., 10 (2017), 1804-1844.
doi: 10.1137/16M1102884.
|
[43]
|
S. Roth and M. J. Black, Fields of experts, Int. J. Comput. Vision, 82 (2009), 205-229.
doi: 10.1007/s11263-008-0197-6.
|
[44]
|
B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, Cambridge, 2002.
|
[45]
|
R. Schwartz, J. Dodge, N. A. Smith and O. Etzioni, Green AI, Commun. ACM, 63 (2020), 54-63.
doi: 10.1145/3381831.
|
[46]
|
D. Ulyanov, A. Vedaldi and V. Lempitsky, Deep image prior, Int. J. Comput. Vision, 128 (2020), 1867-1888.
doi: 10.1007/s11263-020-01303-4.
|
[47]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[48]
|
J. Xiang, Y Dong and Y. Yang, FISTA-Net: Learning a Fast Iterative Shrinkage Thresholding network for inverse problems in imaging, IEEE Trans. Med. Imaging, 40 (2021), 1329-1339.
doi: 10.1109/TMI.2021.3054167.
|
[49]
|
R. Zanella, P. Boccacci, L. Zanni and M. Bertero, Efficient gradient projection methods for edge-preserving removal of Poisson noise, Inverse Probl., 25 (2009), 045010.
doi: 10.1088/0266-5611/25/4/045010.
|