[1]
|
E. Agustsson and R. Timofte, Ntire 2017 challenge on single image super-resolution: Dataset and study, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, (2017), 126-135.
doi: 10.1109/CVPRW.2017.150.
|
[2]
|
M. Forte and F. Pitié, F, B, alpha matting, preprint, arXiv: 2003.07711.
|
[3]
|
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770-778.
doi: 10.1109/CVPR.2016.90.
|
[4]
|
M. Hirsch, S. Sra, B. Schölkopf and S. Harmeling, Efficient filter flow for space-variant multiframe blind deconvolution, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 607-614.
doi: 10.1109/CVPR.2010.5540158.
|
[5]
|
M. Juvonen, S. Siltanen and F. Silva de Moura, Helsinki Deblur Challenge 2021: Description of photographic data, preprint, arXiv: 2105.10233.
|
[6]
|
J. Kim, J. K. Lee and K. M. Lee, Accurate image super-resolution using very deep convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 1646-1654.
doi: 10.1109/CVPR.2016.182.
|
[7]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
|
[8]
|
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin and J. Matas, DeblurGAN: Blind motion deblurring using conditional adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2018), 8183-8192.
doi: 10.1109/CVPR.2018.00854.
|
[9]
|
O. Kupyn, T. Martyniuk, J. Wu and Z. Wang, DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 8878-8887.
doi: 10.1109/ICCV.2019.00897.
|
[10]
|
V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, Soviet Physics Dokl., 10 (1965), 707-710.
|
[11]
|
A. Levin, R. Fergus, F. Durand and W. T. Freeman, Image and depth from a conventional camera with a coded aperture, ACM Transactions on Graphics, 26 (2007), 70-es.
doi: 10.1145/1275808.1276464.
|
[12]
|
D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45 (1989), 503-528.
doi: 10.1007/BF01589116.
|
[13]
|
H. Lu, Y. Dai, C. Shen and S. Xu, Indices matter: Learning to index for deep image matting, Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), 3266-3275.
doi: 10.1109/ICCV.2019.00336.
|
[14]
|
L. B. Lucy, An iterative technique for the rectification of observed distributions, The Astronomical Journal, 79 (1974), 745-754.
doi: 10.1086/111605.
|
[15]
|
S. Nah, T. H. Kim and K. M. Lee, Deep multi-scale convolutional neural network for dynamic scene deblurring, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 257-265.
doi: 10.1109/CVPR.2017.35.
|
[16]
|
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, PyTorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems 32 (NeurIPS), (2019), 8024-8035.
|
[17]
|
S. Qiao, H. Wang, C. Liu, W. Shen and A. Yuille, Micro-batch training with batch-channel normalization and weight standardization, preprint, arXiv: 1903.10520.
|
[18]
|
W. H. Richardson, Bayesian-based iterative method of image restoration, Journal of the Optical Society of America, 62 (1972), 55-59.
doi: 10.1364/JOSA.62.000055.
|
[19]
|
O. Ronneberger, P. Fischer and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention (MICCAI), (2015), 234-241.
doi: 10.1007/978-3-319-24574-4_28.
|
[20]
|
C. J. Schuler, H. C. Burger, S. Harmeling and B. Schölkopf, A machine learning approach for non-blind image deconvolution, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2013), 1067-1074.
doi: 10.1109/CVPR.2013.142.
|
[21]
|
C. J. Schuler, M. Hirsch, S. Harmeling and B. Schölkopf, Learning to deblur, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (2015), 1439-1451.
doi: 10.1109/TPAMI.2015.2481418.
|
[22]
|
R. Smith, An overview of the Tesseract OCR engine, Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR), 2 (2007), 629-633.
doi: 10.1109/ICDAR.2007.4376991.
|
[23]
|
J. Sun, W. Cao, Z. Xu and J. Ponce, Learning a convolutional neural network for non-uniform motion blur removal, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 769-777.
|
[24]
|
Y. Wu and K. He, Group normalization, Proceedings of the European Conference on Computer Vision (ECCV), (2018), 3-19.
doi: 10.1007/978-3-030-01261-8_1.
|
[25]
|
L. Xu, J. S. Ren, C. Liu and J. Jia, Deep convolutional neural network for image deconvolution, Advances in Neural Information Processing Systems, 27 (2014), 1790-1798.
|
[26]
|
S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang and L. Shao, Multi-stage progressive image restoration, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 14821-14831.
doi: 10.1109/CVPR46437.2021.01458.
|
[27]
|
K. Zhang, W. Zuo and L. Zhang, FFDNet: Toward a fast and flexible solution for CNN based image denoising, IEEE Transactions on Image Processing, 27 (2018), 4608-4622.
doi: 10.1109/TIP.2018.2839891.
|
[28]
|
H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, Pyramid scene parsing network, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 2881-2890.
doi: 10.1109/CVPR.2017.660.
|