[1]
|
J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33 (2017), 124007, 24 pp.
doi: 10.1088/1361-6420/aa9581.
|
[2]
|
S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.
doi: 10.1017/S0962492919000059.
|
[3]
|
D. O. Baguer, J. Leuschner and M. Schmidt, Computed tomography reconstruction using deep image prior and learned reconstruction methods, Inverse Problems, 36 (2020), 094004.
doi: 10.1088/1361-6420/aba415.
|
[4]
|
R. Barbano, J. Leuschner, M. Schmidt, A. Denker et al., Is deep image prior in need of a good education? preprint, arXiv: 2111.11926, (2021).
|
[5]
|
A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Transactions on Image Processing, 18 (2009), 2419-2434.
doi: 10.1109/TIP.2009.2028250.
|
[6]
|
D. C. Brown, Decentering distortion of lenses, Photogrammetric Engineering, 32 (1996), 444-464.
|
[7]
|
A. W. Fitzgibbon, Simultaneous linear estimation of multiple view geometry and lens distortion, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). IEEE., (2001).
doi: 10.1109/CVPR.2001.990465.
|
[8]
|
R. C. Gonzalez and R. E. Woods, Digital image processing (3rd edition), Prentice-Hall, Inc., (2006).
|
[9]
|
P. C. Hansen, J. G. Nagy and D. P. O'leary, Deblurring images: Matrices, spectra, and filtering, Society for Industrial and Applied Mathematics, (2006).
doi: 10.1137/1.9780898718874.
|
[10]
|
A. Hauptmann, J. Adler, S. Arridge and O. Öktem, Multi-scale learned iterative reconstruction, IEEE Transactions on Computational Imaging, 6 (2020), 843-856.
doi: 10.1109/TCI.2020.2990299.
|
[11]
|
A. Hauptmann, B. Cox, F. Lucka, N. Huynh et al., Approximate k-Space models and deep learning for fast photoacoustic reconstruction, International Workshop on Machine Learning for Medical Image Reconstruction, Springer, Cham, 2018.
doi: 10.1007/978-3-030-00129-2_12.
|
[12]
|
J.-B. Huang, A. Singh and N. Ahuja, Single image super-resolution from transformed self-exemplars, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2015), 5197-5206.
doi: 10.1109/CVPR.2015.7299156.
|
[13]
|
M. Juvonen, S. Siltanen and F. S. de Moura, Helsinki Deblur Challenge 2021: Description of photographic data, preprint, arXiv: 2105.10233 (2021).
|
[14]
|
A. Kay, Tesseract: An open-source optical character recognition engine, Linux J., 2007 (2007).
|
[15]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980, (2014).
|
[16]
|
F. Knoll, J. Zbontar, A. Sriram, M. J. Muckley, et al., fastMRI: A publicly available raw k-Space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning, Radiology: Artificial Intelligence, 2 (2020), e190007.
doi: 10.1148/ryai.2020190007.
|
[17]
|
J. Leuschner, M. Schmidt, D. O. Baguer and P. Maass, LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction, Scientific Data, 8 (2021).
doi: 10.1038/s41597-021-00893-z.
|
[18]
|
S. Lunz, A. Hauptmann, T. Tarvainen, C.-B. Schonlieb and S. Arridge, On Learned Operator Correction in Inverse Problems, SIAM Journal on Imaging Sciences
doi: 10.1137/20M1338460.
|
[19]
|
O. Ronneberger, P. Fischer and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 9351 (2015), Springer.
doi: 10.1007/978-3-319-24574-4_28.
|
[20]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[21]
|
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, et al., Variational Methods in Imaging, Springer, 2009.
doi: 10.1007/978-0-387-69277-7.
|
[22]
|
M. I. Sezan, G. Pavlovic, A. M. Tekalp and A. T. Erdem, On modeling the focus blur in image restoration, ICASSP, 91 (1991), 2485-2488.
doi: 10.1109/ICASSP.1991.150905.
|
[23]
|
E. Y. Sidky and X. Pan, Report on the AAPM deep-learning sparse-view CT (DL-sparse-view CT) Grand Challenge, Medical Physics, 49 (2022), 4935-4943.
doi: 10.1002/mp.15489.
|
[24]
|
D. Ulyanov, A. Vedaldi and V. Lempitsky, Deep image prior, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 9446-9454.
|
[25]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[26]
|
Y. Wu and K. He, Group normalization, Proceedings of the European Conference on Computer Vision (ECCV), (2018), 3-19.
doi: 10.1007/978-3-030-01261-8_1.
|
[27]
|
L. Xu and J. Jia, Two-phase kernel estimation for robust motion deblurring, European Conference on Computer Vision, (2010).
doi: 10.1007/978-3-642-15549-9_12.
|
[28]
|
L. Xu, J. S. Ren, C. Liu and J. Jia, Deep convolutional neural network for image deconvolution, Advances in Neural Information Processing Systems, 27 (2014).
|
[29]
|
B. Xu, N. Wang, T. Chen and M. Li, Empirical evaluation of rectified activations in convolutional network, arXiv preprint, arXiv: 1505.00853, (2015).
|
[30]
|
J. Zbontar, F. Knoll, A. Sriram, T. Murrell, et al., fastMRI: An open dataset and benchmarks for accelerated MRI, preprint, arXiv: 1811.08839, (2019).
|
[31]
|
K. Zhang, W. Zuo, S. Gu, L. Zhang, et al., Learning deep CNN denoiser prior for image restoration, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 3929-3938.
doi: 10.1109/CVPR.2017.300.
|
[32]
|
Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (2000), 1330-1334.
doi: 10.1109/34.888718.
|
[33]
|
International Organization for Standardization, ISO 12232: 2019 - photography - digital still cameras - determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index, ICS 37.040.10 Photographic Equipment. Projectors, 3 (2019).
|