We consider the inverse problem of determining an inclusion contained in a body for a Schrödinger type equation by means of local Cauchy data. Both the body and the inclusion are made by inhomogeneous and anisotropic materials. Under mild a priori assumptions on the unknown inclusion, we establish a logarithmic stability estimate in terms of the local Cauchy data. In view of possible applications, we also provide a stability estimate in terms of an ad-hoc misfit functional.
Citation: |
[1] |
G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations, 84 (1990), 252-272.
doi: 10.1016/0022-0396(90)90078-4.![]() ![]() ![]() |
[2] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Sc. Norm. Super. Pisa Cl. Sci., 29 (2000), 755-806.
![]() ![]() |
[3] |
G. Alessandrini, M. V. de Hoop, F. Faucher, R. Gaburro and E. Sincich, Inverse problem for the Helmholtz equation with Cauchy data: Reconstruction with conditional well-posedness driven iterative regularization, ESAIM Math. Model. Numer. Anal., 53 (2019), 1005-1030.
doi: 10.1051/m2an/2019009.![]() ![]() ![]() |
[4] |
G. Alessandrini, M. V. de Hoop, R. Gaburro and E. Sincich, Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data, Asymptot. Anal., 108 (2018), 115-149.
doi: 10.3233/asy-171457.![]() ![]() ![]() |
[5] |
G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.
doi: 10.1137/S003614100444191X.![]() ![]() ![]() |
[6] |
G. Alessandrini, M. Di Cristo, A. Morassi and E. Rosset, Stable determination of an inclusion in an elastic body by boundary measurements, SIAM J. Math. Anal., 46 (2014), 2692-2729.
doi: 10.1137/130946307.![]() ![]() ![]() |
[7] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47 pp.
doi: 10.1088/0266-5611/25/12/123004.![]() ![]() ![]() |
[8] |
G. Alessandrini and E. Sincich, Cracks with impedance, stable determination from boundary data, Indiana Univ. Math. J., 62 (2013), 947-989.
doi: 10.1512/iumj.2013.62.5124.![]() ![]() ![]() |
[9] |
G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. Appl. Math., 35 (2005), 207-241.
doi: 10.1016/j.aam.2004.12.002.![]() ![]() ![]() |
[10] |
S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), 41-93.
doi: 10.1088/0266-5611/15/2/022.![]() ![]() ![]() |
[11] |
A. Aspri, E. Beretta, E. Francini and S. Vessella, Lipschitz stable determination of polyhedral conductivity inclusions from local boundary measurements, SIAM J. Math. Anal., 54 (2022), 5182-5222.
doi: 10.1137/22M1480550.![]() ![]() ![]() |
[12] |
A. Bamberger and T. Ha Duong, Diffraction d'une onde acoustique par une paroi absorbante: Nouvelles equations Intégrales, Math. Methods Appl. Sci., 9 (1987), 431-454.
doi: 10.1002/mma.1670090131.![]() ![]() ![]() |
[13] |
E. Beretta, M. V. de Hoop, E. Francini and S. Vessella, Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation, Commun. Part. Differential Equations, 40 (2015), 1365-1392.
doi: 10.1080/03605302.2015.1007379.![]() ![]() ![]() |
[14] |
E. Beretta and E. Francini, Global Lipschitz stability estimates for polygonal conductivity inclusions from boundary measurements, Appl. Anal., 101 (2022), 3536-3549.
doi: 10.1080/00036811.2020.1775819.![]() ![]() ![]() |
[15] |
E. Beretta, E. Francini and S. Vessella, Lipschitz stable determination of polygonal conductivity inclusions in a two-dimensional layered medium from the Dirichlet-to-Neumann map, SIAM J. Math. Anal., 53 (2021), 4303-4327.
doi: 10.1137/20M1369609.![]() ![]() ![]() |
[16] |
C. I. Cârstea and J.-N. Wang, Propagation of smallness for an elliptic PDE with piecewise Lipschitz coefficients, J. Differential Equations, 268 (2020), 7609-7628.
doi: 10.1016/j.jde.2019.11.088.![]() ![]() ![]() |
[17] |
M. Di. Cristo, Stability estimates in the inverse transmission scattering problem, Inverse Probl. Imaging, 3 (2009), 551-565.
doi: 10.3934/ipi.2009.3.551.![]() ![]() ![]() |
[18] |
M. Di. Cristo and Y. Ren, Stable determination of an inclusion for a class of anisotropic conductivities, Inverse Problems, 33 (2017), 095003, 15 pp.
doi: 10.1088/1361-6420/aa7b90.![]() ![]() ![]() |
[19] |
M. Di Cristo and Y. Ren, Stable determination of an inclusion in a layered medium, Appl. Anal., 41 (2020), 4602-4611.
doi: 10.1002/mma.4917.![]() ![]() ![]() |
[20] |
M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems, Inverse Problems, 19 (2003), 685-701.
doi: 10.1088/0266-5611/19/3/313.![]() ![]() ![]() |
[21] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, Rhode Island, 2010.
![]() |
[22] |
S. Foschiatti, R. Gaburro and E. Sincich, Stability for the Calderón's problem for a class of anisotropic conductivities via an ad hoc misfit functional, Inverse Problems, 37 (2021), 125007, 34 pp.
doi: 10.1088/1361-6420/ac349c.![]() ![]() ![]() |
[23] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
![]() ![]() |
[24] |
P. Hahner and T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal., 33 (2001), 670-685.
doi: 10.1137/S0036141001383564.![]() ![]() ![]() |
[25] |
V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Commun. Pure Appl. Math., 41 (1988), 865-877.
doi: 10.1002/cpa.3160410702.![]() ![]() ![]() |
[26] |
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
![]() ![]() |
[27] |
A. Knyazev, A. Jujunashvili and M. Argentati, Angles between infinite dimensional subspaces with applications to the Rayleigh-Ritz and alternating projectors methods, J. Funct. Anal., 259 (2010), 1323-1345.
doi: 10.1016/j.jfa.2010.05.018.![]() ![]() ![]() |
[28] |
O. Ladyzhenskaya and N. Ural'tseva, Linear and Quasilinear Elliptic Equations, 1$^{st}$ edition, Academic Press, New York, 1968.
![]() ![]() |
[29] |
W. Littman, G. Stampacchia and H. W. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Super. Norm. Pisa Cl. Sci., 3 (1963), 43-77.
![]() ![]() |
[30] |
C. Miranda, Partial Differential Equations of Elliptic Type, 2$^{nd}$ edition, Springer-Verlag Berlin, 1970.
![]() ![]() |
[31] |
A. Morassi and E. Rosset, Stable determination of an inclusion in an inhomogeneous eslastic body by boundary measurements, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 101-120.
doi: 10.13137/2464-8728/13153.![]() ![]() ![]() |
[32] |
L. Rondi, E. Sincich and M. Sini, Stable determination of a rigid scatterer in elastodynamics, SIAM J. Math. Anal., 53 (2021), 2660-2689.
doi: 10.1137/20M1352867.![]() ![]() ![]() |