[1]
|
S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.
doi: 10.1017/S0962492919000059.
|
[2]
|
D. O. Baguer, J. Leuschner and M. Schmidt, Computed tomography reconstruction using deep image prior and learned reconstruction methods, Inverse Problems, 36 (2020), 094004, 24 pp.
doi: 10.1088/1361-6420/aba415.
|
[3]
|
R. Barbano, J. Leuschner, M. Schmidt, A. Denker, A. Hauptmann, P. Maass and B. Jin, Is deep image prior in need of a good education?, arXiv preprint, (2021), arXiv: 2111.11926v1.
|
[4]
|
M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numerica, 27, (2018), 1-111.
doi: 10.1017/S0962492918000016.
|
[5]
|
M. Bertero, P. Boccacci, G. Desiderà and G. Vicidomini, Image deblurring with Poisson data: From cells to galaxies, Inverse Problems, 25 (2009), 123006, 26 pp.
doi: 10.1088/0266-5611/25/12/123006.
|
[6]
|
W. Burger and M. J. Burge, Digital Image Processing: An Algorithmic Introduction using Java, 2$^{nd}$ edition, Springer-Verlag, London, 2016.
doi: 10.1007/978-1-4471-6684-9.
|
[7]
|
J. Courtney, SEDIQA: Sound emitting document image quality assessment in a reading aid for the visually impaired, J. Imaging, 7 (2021), 168.
doi: 10.3390/jimaging7090168.
|
[8]
|
S. Dittmer, T. Kluth, P. Maass and D. O. Baguer, Regularization by architecture: A deep prior approach for inverse problemss, J. Math. Imaging Vision, 62 (2019), 456-470.
doi: 10.1007/s10851-019-00923-x.
|
[9]
|
G. Evangelidis and E. Psarakis, Parametric image alignment using enhanced correlation coefficient maximization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (2008), 1858-1865.
doi: 10.1109/TPAMI.2008.113.
|
[10]
|
Y. Feng, Y. Shi and D. Sun, Blind Poissonian image deblurring regularized by a denoiser constraint and deep image prior, Math. Probl. Eng., 2020 (2020), 9483521, 15 pp.
doi: 10.1155/2020/9483521.
|
[11]
|
K. Gong, C. Catana, J. Qi and Q. Li, PET image reconstruction using deep image prior, IEEE Transactions on Medical Imaging, 38 (2019), 1655-1665.
doi: 10.1109/TMI.2018.2888491.
|
[12]
|
P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, Fundamentals of Algorithms, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898718836.
|
[13]
|
P. C. Hansen, J. G. Nagy and D. P. O'Leary, Deblurring Images: Matrices, Spectra, and Filtering, Fundamentals of Algorithms, 3. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.
doi: 10.1137/1.9780898718874.
|
[14]
|
M. Hradiš, J. Kotera, P. Zemcık and F. Šroubek, Convolutional neural networks for direct text deblurring, Proceedings of the British Machine Vision Conference (BMVC), 10 (2015).
doi: 10.5244/C.29.6.
|
[15]
|
M. F. M. Jimenez, O. DeGuchy and R. F. Marcia, Deep convolutional autoencoders for deblurring and denoising low-resolution images, 2020 International Symposium on Information Theory and Its Applications (ISITA), (2020), 549-553.
|
[16]
|
M. Juvonen, S. Siltanen and F. S. Moura, Helsinki deblur challenge 2021: Description of photographic data, arXiv preprint, (2021), arXiv: 2105.10233.
|
[17]
|
M. Juvonen, S. Siltanen and F. S. Moura, Helsinki deblur challenge 2021 open photographic dataset, (2021), Available from: https://zenodo.org/record/4916176.
|
[18]
|
M. Juvonen, S. Siltanen and F. S. Moura, Helsinki deblur challenge 2021 test dataset, (2021), Available from: https://zenodo.org/record/5713637.
|
[19]
|
D. P. Kingma and J. Ba, ADAM: A method for stochastic optimization, 3rd International Conference on Learning Representations, (2015), arXiv: 1412.6980.
|
[20]
|
J. Koh, J. Lee and S. Yoon, Single-image deblurring with neural networks: A comparative survey, Computer Vision and Image Understanding, 203 (2021), 103134.
doi: 10.1016/j.cviu.2020.103134.
|
[21]
|
O. Kupyn, T. Martyniuk, J. Wu and Z. Wang, Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 8877-8886.
doi: 10.1109/ICCV.2019.00897.
|
[22]
|
H. Lan, J. Zhang, C. Yang and F. Gao, Compressed sensing for photoacoustic computed tomography based on an untrained neural network with a shape prior, Biomedical Optics Express, 12 (2021), 7835.
doi: 10.1364/boe.441901.
|
[23]
|
D. Li and T. Jiang, Blur-specific no-reference image quality assessment: A classification and review of representative methods, The Proceedings of the International Conference on Sensing and Imaging, Springer International Publishing, (2019), 45-68.
|
[24]
|
J. Li, Y. Nan and H. Ji, Un-supervised learning for blind image deconvolution via Monte-Carlo sampling, Inverse Problems, 38 (2022), 035012, 26 pp.
doi: 10.1088/1361-6420/ac4ede.
|
[25]
|
J. Liang, D. Doermann and H. Li, Camera-based analysis of text and documents: A survey, International Journal of Document Analysis and Recognition (IJDAR), 7 (2005), 84-104.
doi: 10.1007/s10032-004-0138-z.
|
[26]
|
S. Lim, Characterization of noise in digital photographs for image processing, Proceedings Volume 6069, Digital Photography II, International Society for Optics and Photonics, (2006), 219-228.
doi: 10.1117/12.655915.
|
[27]
|
J. Liu, Y. Sun, X. Xu and U. S. Kamilov, Image restoration using total variation regularized deep image prior, 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2019), 7715-7719.
doi: 10.1109/ICASSP.2019.8682856.
|
[28]
|
Y. Liu, K. Gu, G. Zhai, X. Liu, D. Zhao and W. Gao, Quality assessment for real out-of-focus blurred images, Journal of Visual Communication and Image Representation, 46 (2017), 70-80.
|
[29]
|
M. Makarkin and D. Bratashov, State-of-the-art approaches for image deconvolution problems, including modern deep learning architectures, Micromachines, 12 (2021), 1558.
doi: 10.3390/mi12121558.
|
[30]
|
G. Mataev, P. Milanfar and M. Elad, DeepRED: Deep image prior powered by RED, Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, (2019).
|
[31]
|
T. T. H. Nguyen, A. Jatowt, M. Coustaty and A. Doucet, Survey of post-OCR processing approaches, ACM Comput. Surv., 54 (2022), 1-37.
doi: 10.1145/3453476.
|
[32]
|
G. Ongie, A. Jalal, C. A. Metzler, and R. G. Baraniuk, A. G. Dimakis and R. Willett, Deep learning techniques for inverse problems in imaging, IEEE Journal on Selected Areas in Information Theory, 1 (2020), 39-57.
doi: 10.1109/JSAIT.2020.2991563.
|
[33]
|
A. D. Rasamoelina, F. Adjailia and P. Sinčák, A review of activation function for artificial neural network, 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), (2020), 281-286.
doi: 10.1109/SAMI48414.2020.9108717.
|
[34]
|
D. Ren, K. Zhang, Q. Wang, Q. Hu and W. Zuo, Neural blind deconvolution using deep priors, Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 3341.
doi: 10.1109/cvpr42600.2020.00340.
|
[35]
|
C. J. Shin, T. B. Lee and Y. S. Heo, Dual image deblurring using deep image prior, Electronics, 10 (2021), 2045.
doi: 10.3390/electronics10172045.
|
[36]
|
P. Sinha, Image Acquisition and Preprocessing for Machine Vision Systems, 1$^{st}$ edition, SPIE Press, Bellingham, 2012.
doi: 10.1117/3.858360.
|
[37]
|
R. Smith, An overview of the tesseract OCR engine, Ninth International Conference on Document Analysis and Recognition (ICDAR), (2007), 629-633.
doi: 10.1109/ICDAR.2007.4376991.
|
[38]
|
C. Sun, A. Shrivastava, S. Singh and A. Gupta, Revisiting unreasonable effectiveness of data in deep learning era, Proceedings of the 2017 IEEE international conference on computer vision (ICCV), (2017), 843-852.
doi: 10.1109/ICCV.2017.97.
|
[39]
|
D. Ulyanov, A. Vedaldi and V. Lempitsky, Deep image prior, International Journal of Computer Vision, 128 (2020), 1867-1888.
doi: 10.1007/s11263-020-01303-4.
|
[40]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[41]
|
Z. Wang, Z. Wang, Q. Li and H. Bilen, Image deconvolution with deep image and kernel priors, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), (2019).
doi: 10.1109/iccvw.2019.00127.
|
[42]
|
P. Ye and D. Doermann, Document image quality assessment: A brief survey, 2013 12th International Conference on Document Analysis and Recognition (ICDAR), (2013).
doi: 10.1109/ICDAR.2013.148.
|
[43]
|
G. Zhai and X. Min, Perceptual image quality assessment: A survey, Science China Information Sciences, 63 (2020), 211301.
doi: 10.1007/s11432-019-2757-1.
|
[44]
|
J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. W. H. Lau and M.-H. Yang, Dynamic scene deblurring using spatially variant recurrent neural networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2018).
doi: 10.1109/cvpr.2018.00267.
|
[45]
|
K. Zhang, W. Ren, W. Luo, W.-S. Lai, B. Stenger, M.-H. Yang and H. Li, Deep image deblurring: A survey, arXiv preprint, (2022), arXiv: 2201.10700.
|
[46]
|
H. Zhao, O. Gallo, I. Frosio and J. Kautz, Loss functions for image restoration with neural networks, IEEE Transactions on Computational Imaging, 3 (2017), 47-57.
doi: 10.1109/TCI.2016.2644865.
|