[1]
|
J. Anger, G. Facciolo and M. Delbracio, Modeling realistic degradations in non-blind deconvolution, In 2018 25th IEEE International Conference on Image Processing (ICIP), (2018), 978-982.
doi: 10.1109/ICIP.2018.8451115.
|
[2]
|
J. M. Bioucas-Dias, M. A. T. Figueiredo and J. P. Oliveira, Total variation-based image deconvolution: A majorization-minimization approach, In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2 (2006), Ⅱ-Ⅱ.
|
[3]
|
C. A. Bouman, Model based image processing, Purdue University, 341 (2013).
|
[4]
|
K. Chen, Introduction to variational image-processing models and applications, Int. J. Comput. Math., 90 (2013), 1-8.
doi: 10.1080/00207160.2012.757073.
|
[5]
|
L. Denis, E. Thiébaut and F. Soulez, Fast model of space-variant blurring and its application to deconvolution in astronomy, In 2011 18th IEEE International Conference on Image Processing, (2011), 2817-2820.
doi: 10.1109/ICIP.2011.6116257.
|
[6]
|
S. Feng, O. Yilmaz, Y. Chen and G. T. Schuster, Zero-offset sections with a deblurring filter in the time domain, GEOPHYSICS, 84 (2019), 239-249.
|
[7]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41-76.
doi: 10.1051/m2an/197509R200411.
|
[8]
|
T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk, Fast alternating direction optimization methods, SIAM J. Imaging Sci., 7 (2014), 1588-1623.
doi: 10.1137/120896219.
|
[9]
|
M. Juvonen, S. Siltanen and F. S. de Moura, Helsinki deblur challenge 2021: Description of photographic data, arXiv preprint, arXiv: 2105.10233, 2021.
|
[10]
|
D. Kundur and D. Hatzinakos, Blind image deconvolution, IEEE Signal Processing Magazine, 13 (1996), 43-64.
doi: 10.1109/79.489268.
|
[11]
|
S. Lee and S. Cho, Recent Advances in Image Deblurring, SIGGRAPH Asia 2013 Courses, SA '13, New York, NY, USA, 2013, Association for Computing Machinery.
doi: 10.1145/2542266.2542272.
|
[12]
|
M. E. Moghaddam, A mathematical model to estimate out of focus blur, In 2007 5th International Symposium on Image and Signal Processing and Analysis, (2007), 278-2817.
doi: 10.1109/ISPA.2007.4383705.
|
[13]
|
S. K. Nayar and M. Ben-Ezra, Motion-based motion deblurring, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 689-698.
doi: 10.1109/TPAMI.2004.1.
|
[14]
|
A. Ramdas and R. J. Tibshirani, Fast and flexible admm algorithms for trend filtering, J. Comput. Graph. Statist., 25 (2016), 839-858.
doi: 10.1080/10618600.2015.1054033.
|
[15]
|
Y. Romano, M. Elad and P. Milanfar, The little engine that could: Regularization by denoising (red), SIAM Journal on Imaging Sciences, 10 (2017), 1804-1844.
doi: 10.1137/16M1102884.
|
[16]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[17]
|
R. Tibshirani, Regression shrinkage and selection via the LASSO, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[18]
|
X.-L. Zhao, F. Wang, T.-Z. Huang, M. K. Ng and R. J. Plemmons, Deblurring and sparse unmixing for hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, 51 (2013), 4045-4058.
doi: 10.1109/TGRS.2012.2227764.
|