\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Reconstruction of acoustic source with high-curvature part

  • *Corresponding author: Xiaoping Fang

    *Corresponding author: Xiaoping Fang

The work of Y. Deng was supported by NSFC-RGC Joint Research Grant No. 12161160314 and NSF grant of China No. 11971487. The work of X. Fang was supported by NSF grant of China No. 72001077, Humanities and Social Sciences Foundation of the Ministry of Education No. 20YJC910005, NSF grant of Hunan No. 2021JJ30192 and PSCF of Hunan No. 18YBQ077.

Abstract / Introduction Full Text(HTML) Figure(5) / Table(6) Related Papers Cited by
  • In this paper, we are concerned with the reconstruction of acoustic sources which contain high-curvature components. We consider the Fourier method developed by Wang X et. al. in [35], and take high-curvature boundary into consideration when choosing Fourier coefficients. We investigate the sophisticated relationship between high frequency Fourier coefficients and high-curvature boundary of the acoustic source, and propose a better cutoff procedure which can greatly enhance the effects in reconstruction of high-curvature boundary. The stability of the proposed method is also derived. Numerical experiments are presented to show the effectiveness of our method. The results may be a new perspective for super-resolution reconstruction of acoustic sources.

    Mathematics Subject Classification: Primary: 35C20; Secondary: 35A22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic illustration of perturbation $ D^a $ along $ x_2 $-axis

    Figure 2.  Schematic illustration of perturbation $ D^a $ along $ x_1 $-axis

    Figure 3.  The exact $ f $ and the reconstructions with noise level $ \delta $. (a), (d), (g), (j) and (m) true $ f $; (b), (e) and (h) reconstructions of $ f $ with $ |p|\le30,\ |q|\le30 $; (k) and (n) reconstructions of $ f $ with $ |p|\le40,\ |q|\le40 $; (c) and (f) reconstructions of $ f $ with $ |p|\le60,\ |q|\le15 $; (i) reconstruction of $ f $ with $ |p|\le15,\ |q|\le60 $; (l) reconstruction of $ f $ with $ |p|\le20,\ |q|\le80 $; (o) reconstruction of $ f $ with $ \{(p,q)|\ |p|\le60,\ |q|\le15 \ \text{or}\ |p|\le60,\ |p+q|\le15\} $

    Figure 4.  The exact $ f $ and the reconstructions with noise level $ \delta $. (a), (d), (g), (j) and (m) true $ f $; (b), (e) and (h) reconstructions of $ f $ with $ |p|\le30,\ |q|\le30 $; (k) and (n) reconstructions of $ f $ with $ |p|\le40,\ |q|\le40 $; (c) and (f) reconstructions of $ f $ with $ |p|\le60,\ |q|\le15 $; (i) reconstruction of $ f $ with $ |p|\le15,\ |q|\le60 $; (l) reconstruction of $ f $ with $ |p|\le80, |p+q|\le20 $; (o) reconstruction of $ f $ with $ \{(p,q)|\ |p|\le60,\ |q|\le15 \ \text{or}\ |p|\le60,\ |p+q|\le15\} $

    Figure 5.  The exact $ f $ and the reconstructions with noise level $ \delta $. (a), (d), (g), (j) and (m) true $ f $; (b), (e) and (h) reconstructions of $ f $ with $ |p|\le30,\ |q|\le30 $; (k) and (n) reconstructions of $ f $ with $ |p|\le40,\ |q|\le40 $; (c) and (f) reconstructions of $ f $ with $ |p|\le60,\ |q|\le15 $; (i) reconstruction of $ f $ with $ |p|\le15,\ |q|\le60 $; (l) reconstruction of $ f $ with $ |p|\le80, |p+q|\le20 $; (o) reconstruction of $ f $ with $ \{(p,q)|\ |p|\le60,\ |q|\le15 \ \text{or}\ |p|\le60,\ |p+q|\le15\} $

    Table 1.  Relative errors of high-curvature part

    case 1 case 2 case 3 case 4 case 5
    simple truncation 47.12% 45.53% 46.84% 31.60% 32.75%
    curvature characteristic truncation 27.82% 25.51% 27.27% 20.21% 27.56%
     | Show Table
    DownLoad: CSV

    Table 2.  Relative errors of source $ f $

    case 1 case 2 case 3 case 4 case 5
    simple truncation 13.07% 13.15% 13.03% 10.74% 11.48%
    curvature characteristic truncation 14.58% 15.03% 14.67% 12.47% 12.71%
     | Show Table
    DownLoad: CSV

    Table 3.  Relative errors of high-curvature part

    case 1 case 2 case 3 case 4 case 5
    simple truncation 47.45% 44.31% 47.25% 41.77% 27.10%
    curvature characteristic truncation 27.90% 27.02% 28.99% 27.73% 23.10%
     | Show Table
    DownLoad: CSV

    Table 4.  Relative errors of source $ f $

    case 1 case 2 case 3 case 4 case 5
    simple truncation 12.95% 12.96% 12.53% 11.20% 11.48%
    curvature characteristic truncation 14.46% 14.21% 14.42% 14.15% 12.68%
     | Show Table
    DownLoad: CSV

    Table 5.  Relative errors of high-curvature part

    case 1 case 2 case 3 case 4 case 5
    simple truncation 44.57% 50.45% 44.47% 35.24% 32.88%
    curvature characteristic truncation 28.77% 28.80% 28.42% 25.05% 24.06%
     | Show Table
    DownLoad: CSV

    Table 6.  Relative errors of source $ f $

    case 1 case 2 case 3 case 4 case 5
    simple truncation 11.26% 11.19% 11.16% 9.71% 9.77%
    curvature characteristic truncation 12.68% 12.62% 12.35% 12.90% 10.85%
     | Show Table
    DownLoad: CSV
  • [1] R. Albanese and P. B. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035.  doi: 10.1088/0266-5611/22/3/018.
    [2] C. AlvesR. Kress and P. Serranho, Iterative and range test methods for an inverse source problem for acoustic waves, Inverse Problems, 25 (2009), 055005.  doi: 10.1088/0266-5611/25/5/055005.
    [3] H. AmmariG. Bao and J. L. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382.  doi: 10.1137/S0036139900373927.
    [4] H. Ammari, Y. T. Chow and H. Liu, Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems, SIAM J. Math. Anal., 54 (2022), 1543-1592, arXiv: 1911.00820. doi: 10.1137/20M1323576.
    [5] H. AmmariY. DengH. Kang and H. Lee, Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors, Ann. I. H. Poincare-AN, 31 (2014), 877-897.  doi: 10.1016/j.anihpc.2013.07.008.
    [6] H. Ammari and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, 162, Springer-Verlag, New York, 2007.
    [7] M. A. AnastasioJ. ZhangD. Modgil and P. J. La Rivière, Application of inverse source concepts to photoacoustic tomography, Inverse Problems, 23 (2007), 21-35.  doi: 10.1088/0266-5611/23/6/S03.
    [8] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022.
    [9] A. El Badia and T. Ha-Duong, On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-posed Probl., 10 (2002), 585-599.  doi: 10.1515/jiip.2002.10.6.585.
    [10] G. BaoP. LiJ. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001.  doi: 10.1088/0266-5611/31/9/093001.
    [11] G. BaoJ. Lin and F. Triki, An inverse source problem with multiple frequency data, C. R. Math., 349 (2011), 855-859.  doi: 10.1016/j.crma.2011.07.009.
    [12] G. BaoS. LuW. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628.  doi: 10.1137/140993648.
    [13] E. BlåstenH. LiH. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincare eigenfunctions, ESAIM Math. Model. Numer. Anal., 54 (2020), 957-976.  doi: 10.1051/m2an/2019091.
    [14] E. L. K. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, SIAM Journal on Mathematical Analysis, 53 (2021), 3801-3837.  doi: 10.1137/20M1384002.
    [15] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn, Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.
    [16] Y. DengH. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, Journal of Differential Equations, 267 (2019), 2471-2502.  doi: 10.1016/j.jde.2019.03.019.
    [17] M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005.  doi: 10.1088/0266-5611/25/11/115005.
    [18] A. S. FokasY. Kurylev and V. Marinakis, The unique determination of neuronal currents in the brain via magnetoencephalography, Inverse Problems, 20 (2004), 1067-1082.  doi: 10.1088/0266-5611/20/4/005.
    [19] Y. Gao, H. Liu, X. Wang and K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771, 15 pp. doi: 10.1016/j.jcp.2021.110771.
    [20] R. Griesmaier, M. Hanke and T. Raasch, Inverse source problems for the Helmholtz equation and the windowed Fourier transform, SIAM J. Sci. Comput., 34 (2012), A1544-A1562. doi: 10.1137/110855880.
    [21] R. Griesmaier, M. Hanke and T. Raasch, Inverse source problems for the Helmholtz equation and the windowed Fourier transform Ⅱ, SIAM J. Sci. Comput., 35 (2013), A2188-A2206. doi: 10.1137/130908658.
    [22] S. He and V. G. Romanov, Identification of dipole sources in a bounded domain for Maxwell's equations, Wave Motion, 28 (1998), 25-40.  doi: 10.1016/S0165-2125(97)00063-2.
    [23] V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998. doi: 10.1007/978-1-4899-0030-2.
    [24] R. Kress and W. Rundell, A nonlinear integral equation and an iterative algorithm for an inverse source problem, J. Integral Equ. Appl., 27 (2015), 179-198.  doi: 10.1216/JIE-2015-27-2-179.
    [25] S. Kusiak and J. Sylvester, The scattering support, Commun. Pure Appl. Math., 56 (2003), 1525-1548.  doi: 10.1002/cpa.3038.
    [26] S. Kusiak and J. Sylvester, The convex scattering support in a background medium, SIAM J. Math. Anal., 36 (2005), 1142-1158.  doi: 10.1137/S0036141003433577.
    [27] J. LiH. LiuW.-Y. Tsui and X. Wang, An inverse scattering approach for geometric body generation: A machine learning perspective, Mathematics in Engineering, 1 (2019), 800-823.  doi: 10.3934/mine.2019.4.800.
    [28] H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 105005, 10 pp. doi: 10.1088/0266-5611/31/10/105005.
    [29] H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.
    [30] N. F. M. Martins, An iterative shape reconstruction of source functions in a potential problem using the MFS, Inverse Problems Sci. Eng, 20 (2012), 1175-1193.  doi: 10.1080/17415977.2012.658520.
    [31] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25 (2009), 075011.  doi: 10.1088/0266-5611/25/7/075011.
    [32] G. WangF. MaY. Guo and J. Li, Solving the multi-frequency electromagnetic inverse source problem by the Fourier method, J. Differential Equations, 265 (2018), 417-443.  doi: 10.1016/j.jde.2018.02.036.
    [33] X. Wang, Y. Guo, J. Li and H. Liu, Mathematical design of a novel input/instruction device using a moving acoustic emitter, Inverse Problems, 33 (2017), 105009, 19 pp. doi: 10.1088/1361-6420/aa873f.
    [34] X. WangY. GuoJ. Li and H. Liu, Two gesture-computing approaches by using electromagnetic waves, Inverse Probl. Imaging, 13 (2019), 879-901.  doi: 10.3934/ipi.2019040.
    [35] X. WangY. GuoD. Zhang and H. Liu, Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Problems, 33 (2017), 035001.  doi: 10.1088/1361-6420/aa573c.
    [36] X. WangM. SongY. GuoH. Li and H. Liu, Fourier method for identifying electromagnetic sources with multi-frequency far-field data, J. Comput. Appl. Math., 358 (2019), 279-292.  doi: 10.1016/j.cam.2019.03.013.
    [37] W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594, 18 pp. doi: 10.1016/j.jcp.2020.109594.
    [38] D. Zhang and Y. Guo, Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation, Inverse Problems, 31 (2015), 035007.  doi: 10.1088/0266-5611/31/3/035007.
    [39] P. Zhang, P. Meng, W. Yin and H. Liu, A neural network method for time-dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842, 15 pp. doi: 10.1016/j.cam.2022.114842.
  • 加载中

Figures(5)

Tables(6)

SHARE

Article Metrics

HTML views(3174) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return