| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 47.12% | 45.53% | 46.84% | 31.60% | 32.75% |
| curvature characteristic truncation | 27.82% | 25.51% | 27.27% | 20.21% | 27.56% |
In this paper, we are concerned with the reconstruction of acoustic sources which contain high-curvature components. We consider the Fourier method developed by Wang X et. al. in [
| Citation: |
Figure 3. The exact $ f $ and the reconstructions with noise level $ \delta $. (a), (d), (g), (j) and (m) true $ f $; (b), (e) and (h) reconstructions of $ f $ with $ |p|\le30,\ |q|\le30 $; (k) and (n) reconstructions of $ f $ with $ |p|\le40,\ |q|\le40 $; (c) and (f) reconstructions of $ f $ with $ |p|\le60,\ |q|\le15 $; (i) reconstruction of $ f $ with $ |p|\le15,\ |q|\le60 $; (l) reconstruction of $ f $ with $ |p|\le20,\ |q|\le80 $; (o) reconstruction of $ f $ with $ \{(p,q)|\ |p|\le60,\ |q|\le15 \ \text{or}\ |p|\le60,\ |p+q|\le15\} $
Figure 4. The exact $ f $ and the reconstructions with noise level $ \delta $. (a), (d), (g), (j) and (m) true $ f $; (b), (e) and (h) reconstructions of $ f $ with $ |p|\le30,\ |q|\le30 $; (k) and (n) reconstructions of $ f $ with $ |p|\le40,\ |q|\le40 $; (c) and (f) reconstructions of $ f $ with $ |p|\le60,\ |q|\le15 $; (i) reconstruction of $ f $ with $ |p|\le15,\ |q|\le60 $; (l) reconstruction of $ f $ with $ |p|\le80, |p+q|\le20 $; (o) reconstruction of $ f $ with $ \{(p,q)|\ |p|\le60,\ |q|\le15 \ \text{or}\ |p|\le60,\ |p+q|\le15\} $
Figure 5. The exact $ f $ and the reconstructions with noise level $ \delta $. (a), (d), (g), (j) and (m) true $ f $; (b), (e) and (h) reconstructions of $ f $ with $ |p|\le30,\ |q|\le30 $; (k) and (n) reconstructions of $ f $ with $ |p|\le40,\ |q|\le40 $; (c) and (f) reconstructions of $ f $ with $ |p|\le60,\ |q|\le15 $; (i) reconstruction of $ f $ with $ |p|\le15,\ |q|\le60 $; (l) reconstruction of $ f $ with $ |p|\le80, |p+q|\le20 $; (o) reconstruction of $ f $ with $ \{(p,q)|\ |p|\le60,\ |q|\le15 \ \text{or}\ |p|\le60,\ |p+q|\le15\} $
Table 1. Relative errors of high-curvature part
| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 47.12% | 45.53% | 46.84% | 31.60% | 32.75% |
| curvature characteristic truncation | 27.82% | 25.51% | 27.27% | 20.21% | 27.56% |
Table 2.
Relative errors of source
| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 13.07% | 13.15% | 13.03% | 10.74% | 11.48% |
| curvature characteristic truncation | 14.58% | 15.03% | 14.67% | 12.47% | 12.71% |
Table 3. Relative errors of high-curvature part
| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 47.45% | 44.31% | 47.25% | 41.77% | 27.10% |
| curvature characteristic truncation | 27.90% | 27.02% | 28.99% | 27.73% | 23.10% |
Table 4.
Relative errors of source
| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 12.95% | 12.96% | 12.53% | 11.20% | 11.48% |
| curvature characteristic truncation | 14.46% | 14.21% | 14.42% | 14.15% | 12.68% |
Table 5. Relative errors of high-curvature part
| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 44.57% | 50.45% | 44.47% | 35.24% | 32.88% |
| curvature characteristic truncation | 28.77% | 28.80% | 28.42% | 25.05% | 24.06% |
Table 6.
Relative errors of source
| case 1 | case 2 | case 3 | case 4 | case 5 | |
| simple truncation | 11.26% | 11.19% | 11.16% | 9.71% | 9.77% |
| curvature characteristic truncation | 12.68% | 12.62% | 12.35% | 12.90% | 10.85% |
| [1] |
R. Albanese and P. B. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035.
doi: 10.1088/0266-5611/22/3/018.
|
| [2] |
C. Alves, R. Kress and P. Serranho, Iterative and range test methods for an inverse source problem for acoustic waves, Inverse Problems, 25 (2009), 055005.
doi: 10.1088/0266-5611/25/5/055005.
|
| [3] |
H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382.
doi: 10.1137/S0036139900373927.
|
| [4] |
H. Ammari, Y. T. Chow and H. Liu, Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems, SIAM J. Math. Anal., 54 (2022), 1543-1592, arXiv: 1911.00820.
doi: 10.1137/20M1323576.
|
| [5] |
H. Ammari, Y. Deng, H. Kang and H. Lee, Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors, Ann. I. H. Poincare-AN, 31 (2014), 877-897.
doi: 10.1016/j.anihpc.2013.07.008.
|
| [6] |
H. Ammari and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, 162, Springer-Verlag, New York, 2007.
|
| [7] |
M. A. Anastasio, J. Zhang, D. Modgil and P. J. La Rivière, Application of inverse source concepts to photoacoustic tomography, Inverse Problems, 23 (2007), 21-35.
doi: 10.1088/0266-5611/23/6/S03.
|
| [8] |
S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93.
doi: 10.1088/0266-5611/15/2/022.
|
| [9] |
A. El Badia and T. Ha-Duong, On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-posed Probl., 10 (2002), 585-599.
doi: 10.1515/jiip.2002.10.6.585.
|
| [10] |
G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001.
doi: 10.1088/0266-5611/31/9/093001.
|
| [11] |
G. Bao, J. Lin and F. Triki, An inverse source problem with multiple frequency data, C. R. Math., 349 (2011), 855-859.
doi: 10.1016/j.crma.2011.07.009.
|
| [12] |
G. Bao, S. Lu, W. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628.
doi: 10.1137/140993648.
|
| [13] |
E. Blåsten, H. Li, H. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincare eigenfunctions, ESAIM Math. Model. Numer. Anal., 54 (2020), 957-976.
doi: 10.1051/m2an/2019091.
|
| [14] |
E. L. K. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, SIAM Journal on Mathematical Analysis, 53 (2021), 3801-3837.
doi: 10.1137/20M1384002.
|
| [15] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3.
|
| [16] |
Y. Deng, H. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, Journal of Differential Equations, 267 (2019), 2471-2502.
doi: 10.1016/j.jde.2019.03.019.
|
| [17] |
M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005.
doi: 10.1088/0266-5611/25/11/115005.
|
| [18] |
A. S. Fokas, Y. Kurylev and V. Marinakis, The unique determination of neuronal currents in the brain via magnetoencephalography, Inverse Problems, 20 (2004), 1067-1082.
doi: 10.1088/0266-5611/20/4/005.
|
| [19] |
Y. Gao, H. Liu, X. Wang and K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771, 15 pp.
doi: 10.1016/j.jcp.2021.110771.
|
| [20] |
R. Griesmaier, M. Hanke and T. Raasch, Inverse source problems for the Helmholtz equation and the windowed Fourier transform, SIAM J. Sci. Comput., 34 (2012), A1544-A1562.
doi: 10.1137/110855880.
|
| [21] |
R. Griesmaier, M. Hanke and T. Raasch, Inverse source problems for the Helmholtz equation and the windowed Fourier transform Ⅱ, SIAM J. Sci. Comput., 35 (2013), A2188-A2206.
doi: 10.1137/130908658.
|
| [22] |
S. He and V. G. Romanov, Identification of dipole sources in a bounded domain for Maxwell's equations, Wave Motion, 28 (1998), 25-40.
doi: 10.1016/S0165-2125(97)00063-2.
|
| [23] |
V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.
doi: 10.1007/978-1-4899-0030-2.
|
| [24] |
R. Kress and W. Rundell, A nonlinear integral equation and an iterative algorithm for an inverse source problem, J. Integral Equ. Appl., 27 (2015), 179-198.
doi: 10.1216/JIE-2015-27-2-179.
|
| [25] |
S. Kusiak and J. Sylvester, The scattering support, Commun. Pure Appl. Math., 56 (2003), 1525-1548.
doi: 10.1002/cpa.3038.
|
| [26] |
S. Kusiak and J. Sylvester, The convex scattering support in a background medium, SIAM J. Math. Anal., 36 (2005), 1142-1158.
doi: 10.1137/S0036141003433577.
|
| [27] |
J. Li, H. Liu, W.-Y. Tsui and X. Wang, An inverse scattering approach for geometric body generation: A machine learning perspective, Mathematics in Engineering, 1 (2019), 800-823.
doi: 10.3934/mine.2019.4.800.
|
| [28] |
H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 105005, 10 pp.
doi: 10.1088/0266-5611/31/10/105005.
|
| [29] |
H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008.
|
| [30] |
N. F. M. Martins, An iterative shape reconstruction of source functions in a potential problem using the MFS, Inverse Problems Sci. Eng, 20 (2012), 1175-1193.
doi: 10.1080/17415977.2012.658520.
|
| [31] |
P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25 (2009), 075011.
doi: 10.1088/0266-5611/25/7/075011.
|
| [32] |
G. Wang, F. Ma, Y. Guo and J. Li, Solving the multi-frequency electromagnetic inverse source problem by the Fourier method, J. Differential Equations, 265 (2018), 417-443.
doi: 10.1016/j.jde.2018.02.036.
|
| [33] |
X. Wang, Y. Guo, J. Li and H. Liu, Mathematical design of a novel input/instruction device using a moving acoustic emitter, Inverse Problems, 33 (2017), 105009, 19 pp.
doi: 10.1088/1361-6420/aa873f.
|
| [34] |
X. Wang, Y. Guo, J. Li and H. Liu, Two gesture-computing approaches by using electromagnetic waves, Inverse Probl. Imaging, 13 (2019), 879-901.
doi: 10.3934/ipi.2019040.
|
| [35] |
X. Wang, Y. Guo, D. Zhang and H. Liu, Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Problems, 33 (2017), 035001.
doi: 10.1088/1361-6420/aa573c.
|
| [36] |
X. Wang, M. Song, Y. Guo, H. Li and H. Liu, Fourier method for identifying electromagnetic sources with multi-frequency far-field data, J. Comput. Appl. Math., 358 (2019), 279-292.
doi: 10.1016/j.cam.2019.03.013.
|
| [37] |
W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594, 18 pp.
doi: 10.1016/j.jcp.2020.109594.
|
| [38] |
D. Zhang and Y. Guo, Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation, Inverse Problems, 31 (2015), 035007.
doi: 10.1088/0266-5611/31/3/035007.
|
| [39] |
P. Zhang, P. Meng, W. Yin and H. Liu, A neural network method for time-dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842, 15 pp.
doi: 10.1016/j.cam.2022.114842.
|
Schematic illustration of perturbation
Schematic illustration of perturbation
The exact
The exact
The exact