\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On inverse problems for uncoupled space-time fractional operators involving time-dependent coefficients

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study the uncoupled space-time fractional operators involving time-dependent coefficients and formulate the corresponding inverse problems. Our goal is to determine the variable coefficients from the exterior partial measurements of the Dirichlet-to-Neumann map. We exploit the integration by parts formula for Riemann-Liouville and Caputo derivatives to derive the Runge approximation property for our space-time fractional operator based on the unique continuation property of the fractional Laplacian. This enables us to extend early unique determination results for space-fractional but time-local operators to the space-time fractional case.

    Mathematics Subject Classification: Primary: 35R11, 35R30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Banerjee, V. P. Krishnan and S. Senapati, The Calderón problem for space-time fractional parabolic operators with variable coefficients, arXiv preprint, arXiv: 2205.12509.
    [2] X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Problems and Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.
    [3] Z.-Q. ChenM. M. Meerschaert and E. Nane, Space–time fractional diffusion on bounded domains, Journal of Mathematical Analysis and Applications, 393 (2012), 479-488.  doi: 10.1016/j.jmaa.2012.04.032.
    [4] G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 045004.  doi: 10.1088/1361-6420/ab661a.
    [5] G. CoviK. MönkkönenJ. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: Uniqueness, Advances in Mathematics, 399 (2022), 108246.  doi: 10.1016/j.aim.2022.108246.
    [6] P. d'Avenia and M. Squassina, Ground states for fractional magnetic operators, ESAIM: Control, Optimisation and Calculus of Variations, 24 (2018), 1-24.  doi: 10.1051/cocv/2016071.
    [7] A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed riemannian manifolds, arXiv preprint, arXiv: 2112.03480.
    [8] D. D. S. FerreiraC. E. KenigJ. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial cauchy data, Communications in Mathematical Physics, 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.
    [9] G. B. FollandIntroduction to Partial Differential Equations, Princeton University Press, 1995. 
    [10] C. G. Gal and M. Warma, Fractional-in-Time Semilinear Parabolic Equations and Applications, Springer, 2020. doi: 10.1007/978-3-030-45043-4.
    [11] T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Communications in Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681.
    [12] T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, Journal of Functional Analysis, 108505. doi: 10.1016/j.jfa.2020.108505.
    [13] T. GhoshM. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Analysis & PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455.
    [14] T. Ghosh and G. Uhlmann, The Calderón problem for nonlocal operators, arXiv preprint, arXiv: 2110.09265.
    [15] T. HelinM. LassasL. Ylinen and Z. Zhang, Inverse problems for heat equation and space–time fractional diffusion equation with one measurement, Journal of Differential Equations, 269 (2020), 7498-7528.  doi: 10.1016/j.jde.2020.05.022.
    [16] Y. KianL. OksanenE. Soccorsi and M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations, Journal of Differential Equations, 264 (2018), 1146-1170.  doi: 10.1016/j.jde.2017.09.032.
    [17] M. Kojima, The existence and regularity theory for abstract semilinear time-fractional evolution equations, arXiv preprint, arXiv: 2106.00362.
    [18] P.-Z. Kow and J.-N. Wang, Inverse problems for some fractional equations with general non-linearity, Math. Ntu. Edu. Tw.
    [19] K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Communications in Mathematical Physics, 327 (2014), 993-1009.  doi: 10.1007/s00220-014-1942-z.
    [20] R.-Y. LaiY.-H. Lin and A. Rüland, The Calderón problem for a space-time fractional parabolic equation, SIAM Journal on Mathematical Analysis, 52 (2020), 2655-2688.  doi: 10.1137/19M1270288.
    [21] R.-Y. Lai and T. Zhou, An inverse problem for non-linear fractional magnetic schrodinger equation, J. Differential Equations, 343 (2023), 64–89, arXiv preprint, arXiv: 2103.08180. doi: 10.1016/j.jde.2022.09.033.
    [22] L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, Communications in Partial Differential Equations, 46 (2021), 1017-1026.  doi: 10.1080/03605302.2020.1857406.
    [23] L. Li, A fractional parabolic inverse problem involving a time-dependent magnetic potential, SIAM Journal on Mathematical Analysis, 53 (2021), 435-452.  doi: 10.1137/20M1359638.
    [24] L. Li, An inverse problem for a fractional diffusion equation with fractional power type nonlinearities, Inverse Problems and Imaging, 16 (2022), 613-624.  doi: 10.3934/ipi.2021064.
    [25] L. Li, On inverse problems arising in fractional elasticity, (to appear) Journal of Spectral Theory.
    [26] M. M. MeerschaertD. A. BensonH.-P. Scheffler and P. Becker-Kern, Governing equations and solutions of anomalous random walk limits, Physical Review E, 66 (2002), 060102.  doi: 10.1103/PhysRevE.66.060102.
    [27] G. NakamuraZ. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Mathematische Annalen, 303 (1995), 377-388.  doi: 10.1007/BF01460996.
    [28] H. Quan and G. Uhlmann, The Calderón problem for the fractional dirac operator, arXiv preprint, arXiv: 2204.00965.
    [29] G. Uhlmann, Inverse problems: Seeing the unseen, Bulletin of Mathematical Sciences, 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.
    [30] V. Vergara and R. Zacher, Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations, Journal of Evolution Equations, 17 (2017), 599-626.  doi: 10.1007/s00028-016-0370-2.
    [31] F. Wang and M. Xiang, Multiplicity of solutions to a nonlocal choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differential Equations, 2016 (2016), 1-11. 
    [32] M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063. arXiv preprint, arXiv: 1802.08028. doi: 10.1137/18M117145X.
    [33] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in hilbert spaces, Funkcialaj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.
  • 加载中
SHARE

Article Metrics

HTML views(1694) PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return