\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Deterministic-statistical approach for an inverse acoustic source problem using multiple frequency limited aperture data

  • *Corresponding author: Zhizhang Wu

    *Corresponding author: Zhizhang Wu 
Abstract Full Text(HTML) Figure(7) / Table(2) Related Papers Cited by
  • We propose a deterministic-statistical method for an inverse source problem using multiple frequency limited aperture far field data. The direct sampling method is used to obtain a disc such that it contains the compact support of the source. The Dirichlet eigenfunctions of the disc are used to expand the source function. Then the inverse problem is recast as a statistical inference problem and the Bayesian inversion is employed to reconstruct the coefficients of the eigen-expansion for the source function. The stability of the statistical inverse problem with respect to the measured data is justified in the sense of Hellinger distance. A preconditioned Crank-Nicolson (pCN) Metropolis-Hastings (MH) algorithm is implemented to explore the posterior density function. Numerical examples show that the proposed method is effective for both smooth and non-smooth sources.

    Mathematics Subject Classification: Primary: 35R30; Secondary: 62F15, 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Exact source function $ f $ for Examples $ 1-5 $

    Figure 2.  Example 1 (exact support known). Top row: the histograms of the coefficients for $ f_{BE} $. Second row: $ f_{BE} $. Third row: the reconstruction error $ f-f_{BE} $. Left column: $ \Gamma_1 $. Middle column: $ \Gamma_2 $. Right column: $ \Gamma_3 $

    Figure 3.  Example 1 (reconstructed support). First row: plots of the indicators for the DSM. Second row: $ f_{BE} $'s. Third row: the reconstruction error $ f-f_{BE} $. Left column: $ \Gamma_1 $. Middle column: $ \Gamma_2 $. Right column: $ \Gamma_3 $

    Figure 4.  Example 2. First row: plots of the indicators for the DSM. Second row: the reconstructed $ f_{BE} $. Third row: the reconstruction error $ f-f_{BE} $. Left column: $ \Gamma_1 $. Middle column: $ \Gamma_2 $. Right column: $ \Gamma_3 $

    Figure 5.  Example 3. First row: plots of the indicators for the DSM. Second row: the reconstructed $ f_{BE} $. Third row: the reconstruction error $ f-f_{BE} $. Left column: $ \Gamma_1 $. Middle column: $ \Gamma_2 $. Right column: $ \Gamma_3 $

    Figure 6.  Example 4. First row: plots of the indicators for the DSM. Second row: the reconstructed $ f_{BE} $. Third row: the reconstruction error $ f-f_{BE} $. Left column: $ \Gamma_1 $. Middle column: $ \Gamma_2 $. Right column: $ \Gamma_3 $

    Figure 7.  Example 5. First row: plots of the indicators for the DSM. Second row: the reconstructed $ f_{BE} $. Third row: the reconstruction error $ f-f_{BE} $. Left column: $ \Gamma_1 $. Middle column: $ \Gamma_2 $. Right column: $ \Gamma_3 $

    Table 1.  Exact support of $ f(x) $ and the radii of the discs $ \hat{B} $'s by the DSM

    Exact support Example 1 Example 2 Example 3 Example 4 Example 5
    B(0, 0.9) B(0, 0.9) $ B $(0, 0.7471)$ ^* $ $ a,b=0.9,1.08 $ B(0, 0.9)
    $ \Gamma_1 $ 1.3601 0.9055 0.8246 1.7205 0.9849
    $ \Gamma_2 $ 1.4422 1.1402 1.0198 1.5000 1.2369
    $ \Gamma_3 $ 1.1314 1.0817 1.0817 1.2806 1.1705
     | Show Table
    DownLoad: CSV

    Table 2.  Absolute error (AE) $ \|f-f_{BE}\|_2 $ and the relative error (RE) $ \frac{\|f_{BE}-f\|_2}{\|f\|_2} $

    Example 1 Example 2 Example 3 Example 4 Example 5
    AE$^e$ RE$^e$ AE RE AE RE AE RE AE RE AE RE
    $\Gamma_1$ 0.0336 1.59% 0.0865 4.10% 0.0386 2.59% 0.0653 6.37% 0.3513 26.72% 0.2758 13.74%
    $\Gamma_2$ 0.0463 2.19% 0.1107 5.25% 0.0604 4.05% 0.1707 16.78% 0.3282 24.87% 0.2745 17.40%
    $\Gamma_3$ 0.1200 5.67% 0.1140 5.39% 0.0583 3.91% 0.2641 26.01% 0.4367 33.03% 0.2956 18.72%
     | Show Table
    DownLoad: CSV
  • [1] A. AlzaaligG. HuX. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, Inverse Problems, 36 (2020), 025009.  doi: 10.1088/1361-6420/ab4aec.
    [2] M. AnastasioJ. ZhangD. Modgil and P. La Rivière, Application of inverse source concepts to photoacoustic tomography, Inverse Problems, 23 (2007), S21-S35.  doi: 10.1088/0266-5611/23/6/S03.
    [3] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), 41-93.  doi: 10.1088/0266-5611/15/2/022.
    [4] D. Atkinson, Analytic extrapolations and inverse problems, Applied Inverse Problems (Lecture Notes in Physics 85) ed. P.C. Sabatier, Springer, Berlin, 85 (1978), 111-121.
    [5] G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465.  doi: 10.1016/j.jde.2010.08.013.
    [6] G. BaoJ. Lin and F. Triki, An inverse source problem with multiple frequency data, C. R. Math. Acad. Sci. Paris, 349 (2011), 855-859.  doi: 10.1016/j.crma.2011.07.009.
    [7] G. BaoS. LuW. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628.  doi: 10.1137/140993648.
    [8] N. Bleistein and J. Cohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., 18 (1977), 194-201.  doi: 10.1063/1.523256.
    [9] T. Bui-Thanh and O. Ghattas, An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, SIAM/ASA J. Uncertain. Quantif., 2 (2014), 203-222.  doi: 10.1137/120894877.
    [10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, volume 93 of Applied Mathematical Sciences, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.
    [11] S. L. CotterG. O. RobertsA. Stuart and D. White, MCMC methods for functions: Modifying old algorithms to make them faster, Statist. Sci., 28 (2013), 424-446.  doi: 10.1214/13-STS421.
    [12] A. DevaneyE. Marengo and M. Li, The inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., 67 (2007), 1353-1378.  doi: 10.1137/060658618.
    [13] A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042.  doi: 10.1109/TAP.1982.1142902.
    [14] A. El Badia and T. Ha-Duong, On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-Posed Probl., 10 (2002), 585-599.  doi: 10.1515/jiip.2002.10.6.585.
    [15] M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005.  doi: 10.1088/0266-5611/25/11/115005.
    [16] B. G. Fitzpatrick, Bayesian analysis in inverse problems, Inverse Problems, 7 (1991), 675-702.  doi: 10.1088/0266-5611/7/5/003.
    [17] R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Problems, 27 (2011), 085005.  doi: 10.1088/0266-5611/27/8/085005.
    [18] R. Griesmaier and C. Schmiedecke, A factorization method for multifrequency inverse source problems with sparse far field measurements, SIAM J. Imaging Sci., 10 (2017), 2119-2139.  doi: 10.1137/17M111290X.
    [19] V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1990. doi: 10.1090/surv/034.
    [20] K. ItoB. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003.  doi: 10.1088/0266-5611/28/2/025003.
    [21] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005.
    [22] P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Probl. Imaging, 11 (2017), 745-759.  doi: 10.3934/ipi.2017035.
    [23] Z. LiZ. Deng and J. Sun, Extended-sampling-Bayesian method for limited aperture inverse scattering problems, SIAM J. Imaging Sci., 13 (2020), 422-444.  doi: 10.1137/19M1270501.
    [24] Z. LiY. LiuJ. Sun and L. Xu, Quality-Bayesian approach to inverse acoustic source problems with partial data, SIAM J. Sci. Comput., 43 (2021), A1062-A1080.  doi: 10.1137/20M132345X.
    [25] J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007.  doi: 10.1088/1361-6420/aaca90.
    [26] X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011.  doi: 10.1088/1361-6420/aa777d.
    [27] X. Liu and J. Sun, Data recovery in inverse scattering: From limited aperture to full-aperture, J. Comput. Phys., 386 (2019), 350-364.  doi: 10.1016/j.jcp.2018.10.036.
    [28] Y. LiuY. Guo and J. Sun, A deterministic-statistical approach to reconstruct moving sources using sparse partial data, Inverse Problems, 37 (2021), 065005.  doi: 10.1088/1361-6420/abf813.
    [29] A. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.  doi: 10.1017/S0962492910000061.
    [30] J. Sun and  A. ZhouFinite Element Methods for Eigenvalue Problems, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017. 
    [31] Y. WangF. Ma and E. Zheng, Bayesian method for shape reconstruction in the inverse interior scattering problem, Math. Probl. Eng., 2015 (2015), 935294.  doi: 10.1155/2015/935294.
    [32] Z. YangX. GuiJ. Ming and G. Hu, Bayesian approach to inverse time-harmonic acoustic scattering with phaseless far-field data, Inverse Problems, 36 (2020), 065012.  doi: 10.1088/1361-6420/ab82ee.
    [33] D. Zhang and Y. Guo, Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation, Inverse Problems, 31 (2015), 035007.  doi: 10.1088/0266-5611/31/3/035007.
  • 加载中

Figures(7)

Tables(2)

SHARE

Article Metrics

HTML views(384) PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return