|
[1]
|
A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, Inverse Problems, 36 (2020), 025009.
doi: 10.1088/1361-6420/ab4aec.
|
|
[2]
|
M. Anastasio, J. Zhang, D. Modgil and P. La Rivière, Application of inverse source concepts to photoacoustic tomography, Inverse Problems, 23 (2007), S21-S35.
doi: 10.1088/0266-5611/23/6/S03.
|
|
[3]
|
S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), 41-93.
doi: 10.1088/0266-5611/15/2/022.
|
|
[4]
|
D. Atkinson, Analytic extrapolations and inverse problems, Applied Inverse Problems (Lecture Notes in Physics 85) ed. P.C. Sabatier, Springer, Berlin, 85 (1978), 111-121.
|
|
[5]
|
G. Bao, J. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465.
doi: 10.1016/j.jde.2010.08.013.
|
|
[6]
|
G. Bao, J. Lin and F. Triki, An inverse source problem with multiple frequency data, C. R. Math. Acad. Sci. Paris, 349 (2011), 855-859.
doi: 10.1016/j.crma.2011.07.009.
|
|
[7]
|
G. Bao, S. Lu, W. Rundell and B. Xu, A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628.
doi: 10.1137/140993648.
|
|
[8]
|
N. Bleistein and J. Cohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., 18 (1977), 194-201.
doi: 10.1063/1.523256.
|
|
[9]
|
T. Bui-Thanh and O. Ghattas, An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, SIAM/ASA J. Uncertain. Quantif., 2 (2014), 203-222.
doi: 10.1137/120894877.
|
|
[10]
|
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, volume 93 of Applied Mathematical Sciences, Springer, Cham, 2019.
doi: 10.1007/978-3-030-30351-8.
|
|
[11]
|
S. L. Cotter, G. O. Roberts, A. Stuart and D. White, MCMC methods for functions: Modifying old algorithms to make them faster, Statist. Sci., 28 (2013), 424-446.
doi: 10.1214/13-STS421.
|
|
[12]
|
A. Devaney, E. Marengo and M. Li, The inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., 67 (2007), 1353-1378.
doi: 10.1137/060658618.
|
|
[13]
|
A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042.
doi: 10.1109/TAP.1982.1142902.
|
|
[14]
|
A. El Badia and T. Ha-Duong, On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-Posed Probl., 10 (2002), 585-599.
doi: 10.1515/jiip.2002.10.6.585.
|
|
[15]
|
M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005.
doi: 10.1088/0266-5611/25/11/115005.
|
|
[16]
|
B. G. Fitzpatrick, Bayesian analysis in inverse problems, Inverse Problems, 7 (1991), 675-702.
doi: 10.1088/0266-5611/7/5/003.
|
|
[17]
|
R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Problems, 27 (2011), 085005.
doi: 10.1088/0266-5611/27/8/085005.
|
|
[18]
|
R. Griesmaier and C. Schmiedecke, A factorization method for multifrequency inverse source problems with sparse far field measurements, SIAM J. Imaging Sci., 10 (2017), 2119-2139.
doi: 10.1137/17M111290X.
|
|
[19]
|
V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1990.
doi: 10.1090/surv/034.
|
|
[20]
|
K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003.
doi: 10.1088/0266-5611/28/2/025003.
|
|
[21]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005.
|
|
[22]
|
P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Probl. Imaging, 11 (2017), 745-759.
doi: 10.3934/ipi.2017035.
|
|
[23]
|
Z. Li, Z. Deng and J. Sun, Extended-sampling-Bayesian method for limited aperture inverse scattering problems, SIAM J. Imaging Sci., 13 (2020), 422-444.
doi: 10.1137/19M1270501.
|
|
[24]
|
Z. Li, Y. Liu, J. Sun and L. Xu, Quality-Bayesian approach to inverse acoustic source problems with partial data, SIAM J. Sci. Comput., 43 (2021), A1062-A1080.
doi: 10.1137/20M132345X.
|
|
[25]
|
J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007.
doi: 10.1088/1361-6420/aaca90.
|
|
[26]
|
X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011.
doi: 10.1088/1361-6420/aa777d.
|
|
[27]
|
X. Liu and J. Sun, Data recovery in inverse scattering: From limited aperture to full-aperture, J. Comput. Phys., 386 (2019), 350-364.
doi: 10.1016/j.jcp.2018.10.036.
|
|
[28]
|
Y. Liu, Y. Guo and J. Sun, A deterministic-statistical approach to reconstruct moving sources using sparse partial data, Inverse Problems, 37 (2021), 065005.
doi: 10.1088/1361-6420/abf813.
|
|
[29]
|
A. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061.
|
|
[30]
|
J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017.
|
|
[31]
|
Y. Wang, F. Ma and E. Zheng, Bayesian method for shape reconstruction in the inverse interior scattering problem, Math. Probl. Eng., 2015 (2015), 935294.
doi: 10.1155/2015/935294.
|
|
[32]
|
Z. Yang, X. Gui, J. Ming and G. Hu, Bayesian approach to inverse time-harmonic acoustic scattering with phaseless far-field data, Inverse Problems, 36 (2020), 065012.
doi: 10.1088/1361-6420/ab82ee.
|
|
[33]
|
D. Zhang and Y. Guo, Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation, Inverse Problems, 31 (2015), 035007.
doi: 10.1088/0266-5611/31/3/035007.
|