|
[1]
|
S. Abe and A. K. Rajagopal, Information theoretic approach to statistical properties of multivariate Cauchy-Lorentz distributions, J. Phys. A: Math. Gen., 34 (2001), 8727-8731.
doi: 10.1088/0305-4470/34/42/301.
|
|
[2]
|
I. Abraham, R. Abraham, M. Bergounioux and G. Carlier, Tomogrpahic reconstruction from a few views: A multi-marginal optimal transport approach, Appl. Math. Optim., 75 (2017), 55-73.
doi: 10.1007/s00245-015-9323-3.
|
|
[3]
|
R. Abraham, M. Bergounioux and E. Trelat, A penalization approach for tomographic reconstruction of binary axially symmetric objects, Appl. Math. Optim., 58 (2008), 345-371.
doi: 10.1007/s00245-008-9039-8.
|
|
[4]
|
X. Ai, G. Ni and T. Zeng, Nonconvex regularization for blurred images with Cauchy noise, Inverse Problems and Imaging, 16 (2022), 625-646.
doi: 10.3934/ipi.2021065.
|
|
[5]
|
N. E. Alexander and A. H. Lettington, Derivation of the Loretzian probability model for use in constrained image restoration, J. Modern Optics, 52 (2005), 1893-1903.
doi: 10.1080/09500340500141854.
|
|
[6]
|
I. S. Anderson, R. L. McGreevy and H. Z. Bilheux, Neutron Imaging and Applications, Springer, 2009.
|
|
[7]
|
T. J. Asaki, R. Chartrand, K. R. Vixie and B. Wohlberg, Abel inversion using total-variation regularization, Inverse Problems, 21 (2005), 1895-1903.
doi: 10.1088/0266-5611/21/6/006.
|
|
[8]
|
L. Azzari and A. Foi, Gaussian-Cauchy mixture modeling for robust signal-dependent noise estimation, IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014,978-1-4799-2893-4/14, 10.1109/ICASSP.2014.6854626.
doi: 10.1109/ICASSP.2014.6854626.
|
|
[9]
|
J. Bai and X.-C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Proc., 16 (2007), 2492-2502.
doi: 10.1109/TIP.2007.904971.
|
|
[10]
|
B. Bajić, J. Lindblad and N. Sldoje, Blind restoration of images degraded with mixed Poisson-Gaussian noise with application in transmission electron microscopy, in Inter. Sympo. Biomedical Imaging, IEEE (2016), 123-127.
doi: 10.1109/ISBI.2016.7493226.
|
|
[11]
|
H. H. Barrett and W. Swindell, Radiological Imaging: The Theory of Image Formation, Detection, and Processing, Academic Press, New York, 1981.
|
|
[12]
|
F. Benvenuto, A. L. Camera, C. Theys, A. Ferrari, H. Lantéri and M. Bertero, The study of an iterative method for the recontruction of images corrupted by Poisson and Gaussian noise, Inverse Problems, 24 (2008), 035016-1-03516-20.
doi: 10.1088/0266-5611/24/3/035016.
|
|
[13]
|
M. Bergounioux, Mathematical analysis of a inf-convolution model for image processing, J. Optim. Theory Appl., 168 (2016), 1-21.
doi: 10.1007/s10957-015-0734-8.
|
|
[14]
|
M. Bergounioux, I. Abraham, R. Abraham, G. Carlier, E. Le Pennec and E. Trélat, Variational methods for tomographic reconstruction with few views, Milan J. Math., 86 (2018), 157-200.
doi: 10.1007/s00032-018-0285-1.
|
|
[15]
|
K. Bredies, K Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521.
|
|
[16]
|
M. Burger, J. Müller, E. Papoutsellis and C. B. Schönlieb, Total variation regularization in measurement and image space for PET reconstruction, Inverse Problems, 30 (2014), 105003.
doi: 10.1088/0266-5611/30/10/105003.
|
|
[17]
|
M. Burger and S. Osher, A guide to the TV Zoo, in Level Set and PDE Based Reconstruction Methods in Imaging (eds. M. Burger and S. Osher), Springer International Publishing House, Switzerland, 2013.
doi: 10.1007/978-3-319-01712-9_1.
|
|
[18]
|
J.-F. Cai, R. H. Chan and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Problems and Imaging, 2 (2008), 187-204.
doi: 10.3934/ipi.2008.2.187.
|
|
[19]
|
L. Calatroni, J. C. De Los Reyes and C.-B. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196-1233.
doi: 10.1137/16M1101684.
|
|
[20]
|
L. Calatroni and K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed Gaussian and Salt-and-Pepper noise removal, Inverse Problems, 35 (2019), 114001.
doi: 10.1088/1361-6420/ab291a.
|
|
[21]
|
R. H. Chan, A. Lcnza, S. Morigi and F. Sgallari, An adaptive stragegy for the restoration fo textured images using fracitonal order regularization, Numer. Math. Theor. Meth. Appl., 6 (2013), 276-196.
doi: 10.4208/nmtma.2013.mssvm15.
|
|
[22]
|
T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2001), 503-516.
doi: 10.1137/S1064827598344169.
|
|
[23]
|
Y. Chen, W. W. Hager, M Yashiti, X. Ye and H. Zhang, Bregman operator splitting with variable stepsize for total variation image reconstruction, Comput. Optim. Appl., 54 (2013), 317-342.
doi: 10.1007/s10589-012-9519-2.
|
|
[24]
|
G. Chen and X. Liu, Cauchy pdf modelling and its application to SAR image despeckling, J. Syst. Engin. Elect., 19 (2008), 717-721.
doi: 10.1016/S1004-4132(08)60144-9.
|
|
[25]
|
E. Chouzenoux, A. Jezierska, J.-C. Pesquet and H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 8 (2015), 2662-2682.
doi: 10.1137/15M1014395.
|
|
[26]
|
M. R. Chowdhury, J. Qin and Y. Lou, Non-blind and blind deconvolution under Poisson noise using fractional-order total variation, J. Math. Image Vis., 62 (2020), 1238-1255.
doi: 10.1007/s10851-020-00987-0.
|
|
[27]
|
M. R. Chowdhury, J. Zhang, J. Qin and Y. Lou, Poisson image denoising based on fractional-order total variation, Inverse Prob. Imaging, 14 (2020), 77-96.
doi: 10.3934/ipi.2019064.
|
|
[28]
|
S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-20545-3.
|
|
[29]
|
J. D. Drummound, The adaptive optics Lorentzian point spread function, SPIE Proceedings, 3353 (1998), 1030-1037.
doi: 10.1117/12.321648.
|
|
[30]
|
C. Ekdahl, Characterizing flash-radiography source spots, J. Opt. Soc. Amer. A, 28 (2011), 2501-2509.
doi: 10.1364/JOSAA.28.002501.
|
|
[31]
|
L. C. Evans, Partial Differential Equations, AMS, Rhode Island, 1998.
doi: 10.1090/gsm/019.
|
|
[32]
|
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrange Methods: Applications to the Solution of Boundary-Valued Problems (eds. M. Fortin, R. Glowinski), North Holland, Amsterdam, 1983,299-331.
doi: 10.1016/S0168-2024(08)70034-1.
|
|
[33]
|
M. Ghulyani and M. Arigovindan, Fast roughness minimizing image restoration under mixed Poisson-Gaussian noise, IEEE Trans. Image Proc., 30 (2021), 134-149.
doi: 10.1109/TIP.2020.3032036.
|
|
[34]
|
F. K. Golbaghi, M. Rezghi and M. R Eslahchi, A hybrid image denoising method based on integer and fractional-order total variation, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 1803-1814.
doi: 10.1007/s40995-020-00977-2.
|
|
[35]
|
Z. Gong, Z. Shen and K.-C. Toh, Image restoration with mixed or unknown noises, MultiScale Model. Simul., 12 (2014), 458-487.
doi: 10.1137/130904533.
|
|
[36]
|
K. M. Hanson, Introduction to Bayesian image analysis, in Image Processing (ed. M. H. Loew), Proc. SPIE 1898, (1993), 716-731.
|
|
[37]
|
A. A. Harms and D. R. Wyman, Mathematics and Physics of Neutron Radiography, Springer, Dordrecht, 1986.
doi: 10.1007/978-94-015-6937-8.
|
|
[38]
|
A. K. Heller and J. S. Brenizer, Neutron radiography, in Neutron Imaging and Applications, (eds. I.S. Anderson, R. L. McGreevy, H. Z. Bilheux), Springer, New York, 2009.
doi: 10.1007/978-0-387-78693-3_5.
|
|
[39]
|
M. Holler and K. Kunisch, On infimal convolution of TV type functionals and applications to video and image reconstruction, SIAM J. Imaging Sci., 7 (2014), 2258-2300.
doi: 10.1137/130948793.
|
|
[40]
|
D. S. Hussey, K. J. Coakley, E. baltic and D. L. Jacobson, Improving quantitative neutron radiography through image restoration, Nuc. Inst. Meth. Phys. Res. A, 729 (2013), 316-321.
doi: 10.1016/j.nima.2013.07.013.
|
|
[41]
|
M. Idan and J. L. Speyer, Cauchy estimation for linear scalar systems, IEEE Trans. Automat. Control., 55 (2010), 1329-1342.
doi: 10.1109/TAC.2010.2042009.
|
|
[42]
|
A. Ito, Recognition of sounds using square Cauchy mixture distribution, in IEEE Int. Conf. Signal and Image Proc. (ICSIP), 2016.
doi: 10.1109/SIPROCESS.2016.7888359.
|
|
[43]
|
E. Jonsson, C.-S. Huang and T. Chan, Total Variation Regularization in Positron Emission Tomography, CAM Report 98-48, UCLA, 1998.
|
|
[44]
|
Y. Kaganovsky, S. Han, S. Degirmenci, D. G. Politte, D. J. Brady, J. A. O'Sullivan and L. Carin, Alteranting minimization algorithm with automatic relevance determination for transmission tomography under Poisson noise, SIAM J. Imaging Sci., 8 (2015), 2087-2132.
doi: 10.1137/141000038.
|
|
[45]
|
S. H. Kayyar and P. Jidesh, Non-local total variation regularization approach for image restoration under a Poisson degradation, J. Mode. Optics, 65 (2018), 2265-2276.
doi: 10.1080/09500340.2018.1506058.
|
|
[46]
|
L. Kong and S. Wei, A variational method for Abel inversion Tomography with mixed Poisson-Laplace-Gaussian noise, Inverse Problems and Imaging, 16 (2022), 967-995.
doi: 10.3934/ipi.2022007.
|
|
[47]
|
F. Laus, F. Pierre and G. Steidl, Nonlocal myriad filters for Cauchy noise removal, J. Math. Imaging Vis., 60 (2018), 1324-1354.
doi: 10.1007/s10851-018-0816-y.
|
|
[48]
|
T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vis., 27 (2007), 257-263.
doi: 10.1007/s10851-007-0652-y.
|
|
[49]
|
A. H. Lettington and Q. H. Hong, Image restoration using a Lorentzian probability model, J. Modern Optics, 42 (1995), 1367-1376.
doi: 10.1080/09500349514551201.
|
|
[50]
|
A. H. Lettington, M. P. Rollason, S. Tzimoplulou and E. Boukouvala, Image restoration using a two-dimensional Lorentzian probability model, J. Modern Optics, 47 (2000), 931-938.
doi: 10.1080/09500340008235101.
|
|
[51]
|
A. Levin, Y. Weiss, F. Durand and W. T. Freeman, Understanding and evaluating blind deconvolution algorithms, in IEEE Conf. Cmputer Vis. Pattern Recog., 2009, 1964-1971.
doi: 10.1109/CVPR.2009.5206815.
|
|
[52]
|
F. Li, C. Shen, J. Fan and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image R., 18 (2007), 322-330.
doi: 10.1016/j.jvcir.2007.04.005.
|
|
[53]
|
J. Li, Z. Shen, R. Yin and X. Zhang, A reweighted $\ell^2$ method for image restoration with Poisson and mixed Possion-Gaussian noise, Inverse Problems and Imaging, 9 (2015), 875-894.
doi: 10.3934/ipi.2015.9.875.
|
|
[54]
|
Q. Liu and S. Gao, Directional fractional-order total variation hybrid regularization for image deblurring, J. Electron. Imaging, 29 (2020), 033001.
doi: 10.1117/1.JEI.29.3.033001.
|
|
[55]
|
X. Liu and L. Huang, Toatal variational variation-based Poissonian images recovery by split Bregman iteration, Math. Meth. Appl. Sci., 35 (2012), 520-529.
doi: 10.1002/mma.1588.
|
|
[56]
|
J. Liu, H. Huang, Z. Huan and H. Zhang, Adaptive variational method for restoring color images with high density impulsive noise, Int. J. Comput. Vision, 90 (2010), 131-149.
doi: 10.1007/s11263-010-0351-9.
|
|
[57]
|
J. Liu, X.-C. Tai, H. Huang and Z. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE Trans. Image Proc., 22 (2013), 1108-1120.
doi: 10.1109/TIP.2012.2227766.
|
|
[58]
|
J. Liu and H. Zhang, Image segmentation using a local GMM in a variational framework, J. Math. Imaging Vis., 46 (2013), 161-176.
doi: 10.1007/s10851-012-0376-5.
|
|
[59]
|
F. Luisier, T. Blu and M. Unser, Image denoising in mixed Poisson-Gaussian noise, IEEE Trans. Image Proc., 20 (2011), 696-708.
doi: 10.1109/TIP.2010.2073477.
|
|
[60]
|
M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time, IEEE Trans. on Image Proc., 12 (2009), 1579-1590.
doi: 10.1109/TIP.2003.819229.
|
|
[61]
|
M. Matsubayashi, A. Tsuruno, T. Kodaira and H. Kobayashi, High resolution static imaging system using a cooled CCD camera, Nuclear Instruments and Methods in Physics Research A, 377 (1996), 107-110.
doi: 10.1016/0168-9002(96)00126-X.
|
|
[62]
|
G. Mclachlan and D. Peel, Finite Mxiture Models, Wiley, New York, 2000.
doi: 10.1002/0471721182.
|
|
[63]
|
J.-J. Mei, Y. Dong, T.-Z. Huang and W. Yin, Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci. Comput., 74 (2018), 743-766.
doi: 10.1007/s10915-017-0460-5.
|
|
[64]
|
M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis., 20 (2004), 99-120.
|
|
[65]
|
S. Oh, H. Woo, S. Yun and M. Kang, Non-convex hybrid total variation for image denoising, J. Vis. Commun. Image R., 24 (2013), 322-334.
doi: 10.1016/j.jvcir.2013.01.010.
|
|
[66]
|
K. Papafitsoros and C. B. Schönlieb, A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vis., 48 (2014), 308-338.
doi: 10.1007/s10851-013-0445-4.
|
|
[67]
|
Y. Peng, J. Chen, X. Xu and F. Pu, SAR images statistical modeling and classification based on the mixture of alpha-stable distributions, Remote Sens., 5 (2013), 2145-2163.
doi: 10.3390/rs5052145.
|
|
[68]
|
D. Perrone, R. Disthelm and P. Favaro, Blind Deconvolution via lower-bounded logarithmic image priors, in EMMCVPR 2015 (eds. X.-C. Tai), Springer International Publishing, (2015), 112-125.
doi: 10.1007/978-3-319-14612-6_9.
|
|
[69]
|
D. Perrone and P. Favaro, A logarithmic image prior for blind deconvolution, Int. J. Comput. Vis., 117 (2016), 159-172.
doi: 10.1007/s11263-015-0857-2.
|
|
[70]
|
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
|
|
[71]
|
H. Rabbani, M. Vafadust, S. Gazor and I. Selesnick, Image denoising exploying a bivariate Cauchy distribution with local variance in complex wavelet domain, in IEEE 12th Digital Signal Processing Workshop, (2006), 203-208.
doi: 10.1109/DSPWS.2006.265407.
|
|
[72]
|
A. Rehman, Z. Wang, D. Brunet and E. R. Vrscay, SSIM-inspried image denoising using saprse representations, IEEE ICASSP, (2011), 1121-1124.
doi: 10.1109/ICASSP.2011.5946605.
|
|
[73]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
|
[74]
|
A. Sawatzky, (Nonlocal) Total Variation in Medical Imaging, Ph. D. thesis, University of Muenster, Germany, 2011.
|
|
[75]
|
A. Sawatzky, C. Brune, T. Kösters, F. Wübbeling and M. Burger, EM-TV methods for Inverse problems with Poisson noise, in Level Set and PDE Based Reconstruction Methods in Imaging (eds. M. Burger and S. Osher), Springer International Publishing House, Switzerland, 2013.
doi: 10.1007/978-3-319-01712-9_2.
|
|
[76]
|
F. Sciacchitano, Y. Dong and T. Zeng, Variational approach for restoring blurred images with Cauchy noise, SIAM J. Imaging Sci., 8 (2015), 1894-1922.
doi: 10.1137/140997816.
|
|
[77]
|
J. Shao, H. Lu and H. Cai, A point spread function model for X-ray imaging (in Chinese), Acta Opt. Sinica, 25 (2005), 1148-1152.
|
|
[78]
|
X. Shu and N. Ahuja, Hybrid compressive sampling via a new total variation TVL1, Lect. Notes Comput. Sci., 6316 (2010), 393-404.
doi: 10.1007/978-3-642-15567-3_29.
|
|
[79]
|
D. L. Snyder, A. M. Hammoud and R. L. White, Image recovery from data acquired with a charge-coupled-device camera, J. Opt. Soc. Am. A, 10 (1993), 1014-1023.
doi: 10.1364/JOSAA.10.001014.
|
|
[80]
|
A. Staglianò, P. Boccacci and M. Bertero, Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle, Inverse Problems, 27 (2017), 125003, 20 pp.
doi: 10.1088/0266-5611/27/12/125003.
|
|
[81]
|
G. Steidl, Combined first and second order variational approaches for image processing, Jahresber Dtsch Math-Ver, 117 (2015), 133-160.
doi: 10.1365/s13291-015-0113-2.
|
|
[82]
|
W. Treimer, Neutron tomography, in Neutron Imaging and Applications: A Reference for the Imaging Community, (eds. I.S. Andnerson, R. L. McGreevy, H. Z. Biheux), Springer, New York, 2009.
doi: 10.1007/978-0-387-78693-3_6.
|
|
[83]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structured similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
|
[84]
|
Y. Wang, Q. Li, N. Chen, J.-M. Cheng, Y.-T. Xie, Y.-L. Liu and Q.-H. Long, Spot size measurement of a flash-radiography source using the pinhole imaging method, Chinese Phys. C, 40 (2016), 076202.
doi: 10.1088/1674-1137/40/7/076202.
|
|
[85]
|
X. Wang, R. Song, C. Song and J. Tao, The NSCT-HMT model of remote sensing image based on Gaussian-Cauchy mixture distribution, IEEE Access, 6 (2018), 66007-66019.
doi: 10.1109/ACCESS.2018.2876447.
|
|
[86]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.
doi: 10.1137/080724265.
|
|
[87]
|
J. Weickert and G. Kühne, Fast methods for implicit active contour models, in Geometic Level Set Methods in Imaging, Vision, and Graphics (eds. S. Osher and N. Paragios), Springer-Verlag, New York, (2003), 43-57.
doi: 10.1007/0-387-21810-6_3.
|
|
[88]
|
R. Wituła and D. Słota, Cardano's formula, square roots, Chebyshev polynominals and radicals, J. Math. Anal. Appl., 363 (2010), 639-647.
doi: 10.1016/j.jmaa.2009.09.056.
|
|
[89]
|
C. Wu and X.-C. Tai, Augmented Lagrangian Method, Dual Methods, and Split Bregman iteration for ROF, vectorial TV and high order models, SIAM J. Imaging Sci., 3 (2010), 303-329.
doi: 10.1137/090767558.
|
|
[90]
|
Y. Xiao, T. Zeng, J. Yu and M. K. Ng, Rstoration of images corrupted by mixed Gaussian-impulse noise via $l_1$-$l_0$ minimization, Pattern Recognition, 44 (2011), 1708-1720.
doi: 10.1016/j.patcog.2011.02.002.
|
|
[91]
|
Y. Xu, Block Coordinate Descent for Regularized Multi-Convex Optimization, MA thesis, Rice University, Housten, Texas, 2013.
|
|
[92]
|
Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6 (2013), 1758-1789.
doi: 10.1137/120887795.
|
|
[93]
|
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 46 (2011), 20-46.
doi: 10.1007/s10915-010-9408-8.
|
|
[94]
|
J. Zhang and K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sciences, 8 (2015), 2487-2518.
doi: 10.1137/14097121X.
|
|
[95]
|
J. Zhang and Z. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, App. Math. Mod., 35 (2011), 2516-2528.
doi: 10.1016/j.apm.2010.11.049.
|
|
[96]
|
J. Zhang, Z. Wei and L. Xiao, Fractional-order iterative regularization method for total variation based image denoising, J. Elect. Imaging, 21 (2012), 043005-1.
doi: 10.1117/1.JEI.21.4.043005.
|
|
[97]
|
X. Zhang, M. K. Ng and M. Bai, A fast algorithm for deconvolution and Poisson noise removal, J. Sci. Comput., 75 (2018), 1535-1554.
doi: 10.1007/s10915-017-0597-2.
|
|
[98]
|
Y. Zhang, W. Zhang, Y. Lei and J. Zhou, Few-view image reconstruction with fractional-order total variation, J. Opt. Soc. Am. A, 31 (2014), 981-995.
doi: 10.1364/JOSAA.31.000981.
|
|
[99]
|
H. Zhu, Study on the Image Restoration of $\gamma$-ray Pinhole Imaging System (in Chinese), En.D thesis, Tsinghua University in Beijing, 2008.
|