|
[1]
|
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Prog., 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.
|
|
[2]
|
J. A. Bengua, H. N. Phien, H. D. Tuan and M. N. Do, Efficient tensor completion for color image and video recovery: Low-rank tensor train, IEEE Trans. Image Process., 26 (2017), 2466-2479.
doi: 10.1109/TIP.2017.2672439.
|
|
[3]
|
J. Bolte, A. Daniilidis, A. Lewis and M. Shiota, Clarke subgradients of stratifiable functions, SIAM J. Optim., 18 (2007), 556-572.
doi: 10.1137/060670080.
|
|
[4]
|
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Prog., 146 (2014), 459-494.
doi: 10.1007/s10107-013-0701-9.
|
|
[5]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. and Trends in Mach. Learn., 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
|
[6]
|
E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, J. ACM, 58 (2011), 1-37.
doi: 10.1145/1970392.1970395.
|
|
[7]
|
E. J. Candes and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Trans. Inf. Theory, 56 (2010), 2053-2080.
doi: 10.1109/TIT.2010.2044061.
|
|
[8]
|
C. Chen, X. Li, M. K. Ng and X. Yuan, Total variation based tensor decomposition for multi-dimensional data with time dimension, Numer. Linear Algeb. Appl., 22 (2015), 999-1019.
doi: 10.1002/nla.1993.
|
|
[9]
|
C. Chen, Z.-B. Wu, Z.-T. Chen, Z.-B. Zheng and X.-J. Zhang, Auto-weighted robust low-rank tensor completion via tensor-train, Inform. Sci., 567 (2021), 100-115.
doi: 10.1016/j.ins.2021.03.025.
|
|
[10]
|
M. Ding, T.-Z. Huang, X.-L. Zhao, M. K. Ng and T.-H. Ma, Tensor train rank minimization with nonlocal self-similarity for tensor completion, Inverse Probl. Imag., 15 (2021), 475-498.
doi: 10.3934/ipi.2021001.
|
|
[11]
|
M. Fazel, T. K. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with applications to system identification and realization, SIAM J. Matrix Anal. Appl., 34 (2013), 946-977.
doi: 10.1137/110853996.
|
|
[12]
|
C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), 1-39.
doi: 10.1145/2512329.
|
|
[13]
|
B. Huang, C. Mu, D. Goldfarb and J. Wrigh, Provable models for robust low-rank tensor completion, Pac. J. Optim., 11 (2015), 339-364.
|
|
[14]
|
H. Huang, Y. Liu, Z. Long and C. Zhu, Robust low-rank tensor ring completion, IEEE Trans. Comput. Imaging, 6 (2020), 1117-1126.
doi: 10.1109/TCI.2020.3006718.
|
|
[15]
|
Q. Jiang and M. Ng, Robust low-tubal-rank tensor completion via convex optimization, in Proceedings of the IJCAI, 2649-2655.
doi: 10.24963/ijcai.2019/368.
|
|
[16]
|
M. E. Kilmer, K. Braman, N. Hao and R. C. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34 (2013), 148-172.
doi: 10.1137/110837711.
|
|
[17]
|
M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algeb. Appl., 435 (2011), 641-658.
doi: 10.1016/j.laa.2010.09.020.
|
|
[18]
|
B.-Z. Li, X.-L. Zhao, T.-Y. Ji, X.-J. Zhang and T.-Z. Huang, Nonlinear transform induced tensor nuclear norm for tensor completion, J. Sci. Comput., 92 (2022), Paper No. 83, 30 pp.
doi: 10.1007/s10915-022-01937-1.
|
|
[19]
|
J. Liu, P. Musialski, P. Wonka and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), 208-220.
doi: 10.1109/TPAMI.2012.39.
|
|
[20]
|
C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 925-938.
doi: 10.1109/TPAMI.2019.2891760.
|
|
[21]
|
C.-Y. Lyu, X.-L. Zhao, B.-Z. Li, H. Zhang and T.-Z. Huang, Multi-dimensional image recovery via fully-connected tensor network decomposition under the learnable transforms, J. Sci. Comput., 93 (2022), Paper No. 49, 24 pp.
doi: 10.1007/s10915-022-02009-0.
|
|
[22]
|
I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), 2295-2317.
doi: 10.1137/090752286.
|
|
[23]
|
O. Semerci, N. Hao, M. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.
doi: 10.1109/TIP.2014.2305840.
|
|
[24]
|
Y. Shi, Z. Liu, X. Wang and J. Zhang, Edge detection with mixed noise based on maximum a posteriori approach, Inverse Probl. Imag., 15 (2021), 1223-1245.
doi: 10.3934/ipi.2021035.
|
|
[25]
|
G. Song, M. K. Ng and X. Zhang, Robust tensor completion using transformed tensor singular value decomposition, Numer. Linear Algeb. Appl., 27 (2020), e2299, 27 pp.
doi: 10.1002/nla.2299.
|
|
[26]
|
L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), 279-311.
doi: 10.1007/BF02289464.
|
|
[27]
|
K. Wei, J.-F. Cai, T. F. Chan and S. Leung, Guarantees of riemannian optimization for low rank matrix completion, Inverse Probl. Imag., 14 (2020), 233-265.
doi: 10.3934/ipi.2020011.
|
|
[28]
|
Y. Xu, R. Hao, W. Yin and Z. Su, Parallel matrix factorization for low-rank tensor completion, Inverse Probl. Imag., 9 (2015), 601-624.
doi: 10.3934/ipi.2015.9.601.
|
|
[29]
|
Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6 (2013), 1758-1789.
doi: 10.1137/120887795.
|
|
[30]
|
N. Yair and T. Michaeli, Multi-scale weighted nuclear norm image restoration, in Proceedings of the CVPR, 3165-3174.
doi: 10.1109/CVPR.2018.00334.
|
|
[31]
|
H. Yang, X. Ding, R. Chan, H. Hu, Y. Peng and T. Zeng, A new initialization method based on normed statistical spaces in deep networks, Inverse Probl. Imag., 15 (2021), 147-158.
doi: 10.3934/ipi.2020045.
|
|
[32]
|
J.-H. Yang, X.-L. Zhao, T.-Y. Ji, T.-H. Ma and T.-Z. Huang, Low-rank tensor train for tensor robust principal component analysis, Appl. Math. Comput., 367 (2020), 124783, 15 pp.
doi: 10.1016/j.amc.2019.124783.
|
|
[33]
|
K. Ye and L.-H. Lim, Tensor network ranks, arXiv: 1801.02662.
|
|
[34]
|
J. Yu, C. Li, Q. Zhao and G. Zhou, Tensor-ring nuclear norm minimization and application for visual data completion, in Proceedings of the ICASSP, (2019), 3142-3146.
doi: 10.1109/ICASSP.2019.8683115.
|
|
[35]
|
Q. Yu, X. Zhang and Z.-H. Huang, Multi-tubal rank of third order tensor and related low rank tensor completion problem, arXiv preprint, arXiv: 2012.05065.
|
|
[36]
|
H. Zhang, X.-L. Zhao, T.-X. Jiang, M. K. Ng and T.-Z. Huang, Multiscale feature tensor train rank minimization for multidimensional image recovery, IEEE Trans. Cybern., 52 (2021), 13395-13410.
doi: 10.1109/TCYB.2021.3108847.
|
|
[37]
|
J. Zhang, Y. Duan, Y. Lu, M. K. Ng and H. Chang, Bilinear constraint based admm for mixed poisson-gaussian noise removal, Inverse Probl. Imag., 15 (2021), 339-366.
doi: 10.3934/ipi.2020071.
|
|
[38]
|
X. Zhang, A nonconvex relaxation approach to low-rank tensor completion, IEEE Trans. Neural Netws. Learn. Syst., 30 (2019), 1659-1671.
doi: 10.1109/TNNLS.2018.2872583.
|
|
[39]
|
X. Zhang and M. K. Ng, Robust tensor train component analysis, Numer. Linear Algeb. Appl., 29 (2022), e2403.
doi: 10.1002/nla.2403.
|
|
[40]
|
M. Zhao, Y.-W. Wen, M. Ng and H. Li, A nonlocal low rank model for poisson noise removal, Inverse Probl. Imag., 15 (2021), 519-537.
doi: 10.3934/ipi.2021003.
|
|
[41]
|
Q. Zhao, G. Zhou, S. Xie, L. Zhang and A. Cichocki, Tensor ring decomposition, arXiv preprint, arXiv: 1606.05535.
|
|
[42]
|
X. Zhao, M. Bai and M. K. Ng, Nonconvex optimization for robust tensor completion from grossly sparse observations, J. Sci. Comput., 85 (2020), Paper No. 46, 32 pp.
doi: 10.1007/s10915-020-01356-0.
|
|
[43]
|
Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, T.-X. Jiang, T.-H. Ma and T.-Y. Ji, Mixed noise removal in hyperspectral image via low-fibered-rank regularization, IEEE Trans. Geosci. Remote Sens., 58 (2020), 734-749.
doi: 10.1109/TGRS.2019.2940534.
|
|
[44]
|
Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Q. Zhao and T.-X. Jiang, Fully-connected tensor network decomposition and its application to higher-order tensor completion, in Proceedings of the AAAI Conf. Artifi. Intell., 35 (2021).
doi: 10.1609/aaai.v35i12.17321.
|