\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary

  • *Corresponding author: Isaac Harris

    *Corresponding author: Isaac Harris 

The authors R. Ceja Ayala and I. Harris are supported in part by the NSF DMS grant [2107891]

Abstract / Introduction Full Text(HTML) Figure(7) / Table(1) Related Papers Cited by
  • In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.

    Mathematics Subject Classification: Primary: 35R30; Secondary: 78A46.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Reconstruction using an interpolating polynomial of degree $ M = 4 $ of peanut region by the Landweber direct sampling method. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Figure 2.  Reconstruction using an interpolating polynomial of degree $ M = 6 $ of peanut region by the Landweber direct sampling method. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Figure 3.  Reconstruction using an interpolating polynomial of degree $ M = 4 $ of peanut region by the Landweber direct sampling method with $ 20\% $ noise. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Figure 4.  Reconstruction using an interpolating polynomial of degree $ M = 4 $ of kite scatterer by the Landweber direct sampling method with $ 10\% $ noise. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Figure 5.  Reconstruction using an interpolating polynomial of degree $ M = 4 $ of kite scatterer by the Landweber direct sampling method with $ 20\% $ noise. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Figure 6.  Reconstruction using an interpolating polynomial of degree $ M = 4 $ of circle scatterer by the Landweber iteration method with $ 15\% $ noise. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Figure 7.  Reconstruction using an interpolating polynomial of degree $ M = 4 $ of circle scatterer by the Landweber iteration method with $ 15\% $ noise. Images left to right: reconstruction using equidistant points, singular values, and Gaussian quadrature points

    Table 1.  Absolute error of the far-field with 64 equidistant incident directions and 64 evaluation for the disk with $ R = 1 $ and the parameters, $ \eta = 2+\mathrm{i} $, and $ n = 4+\mathrm{i} $ for varying number of faces (collocation nodes). The wave numbers are $ k = 2 $, $ k = 4 $, and $ k = 6 $

    $ N_f $ $ \varepsilon_2^{(N_f)} $ $ \varepsilon_4^{(N_f)} $ $ \varepsilon_6^{(N_f)} $
    10 0.82745 9.75548 74.46130
    20 0.01051 0.41988 3.07890
    40 0.00089 0.00556 0.03872
    80 0.00011 0.00018 0.00108
     | Show Table
    DownLoad: CSV
  • [1] H. Ammari, E. Iakovleva and D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597-628. doi: 10.1137/040610854.
    [2] L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of far field measurements, Inverse Problems, 30 (2014), 035011. doi: 10.1088/0266-5611/30/3/035011.
    [3] O. Bondarenko, I. Harris and A. Kleefeld, The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Applicable Analysis, 96 (2017), 2-22. doi: 10.1080/00036811.2016.1204440.
    [4] O. Bondarenko and X. Liu, The factorization method for inverse obstacle scattering with conductive boundary condition, Inverse Problems, 29 (2013), 095021. doi: 10.1088/0266-5611/29/9/095021.
    [5] F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.
    [6] F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS Series, SIAM 88, Philadelphia, 2016. doi: 10.1137/1.9781611974461.ch1.
    [7] R. Ceja Ayala, I. Harris, A. Kleefeld and N. Pallikarakis, Analysis of the transmission eigenvalue problem with two conductivity parameters, Applicable Analysis, 2023. arXiv: 2209.07247 doi: 10.1080/00036811.2023.2181167.
    [8] Y. T. Chow, F. Han and J. Zou, A direct sampling method for simultaneously recovering inhomogeneous inclusions of different nature, SIAM J. Sci. Comput., 43 (2021), A2161-A2189. doi: 10.1137/20M133628X.
    [9] Y. T. Chow, K. Ito, K. Liu and J. Zou, Direct sampling method for diffusive optical tomography, SIAM J. Sci. Comput., 37 (2015), A1658-A1684. doi: 10.1137/14097519X.
    [10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, New York, third edition, 2013. doi: 10.1007/978-1-4614-4942-3.
    [11] I. Harris, Direct methods for recovering sound soft scatterers from point source measurements, Computation, 9 (2021), 120. 
    [12] I. Harris and A. Kleefeld, The inverse scattering problem for a conductive boundary condition and transmission eigenvalues, Applicable Analysis, 99 (2020), 508-529. doi: 10.1080/00036811.2018.1504028.
    [13] I. Harris and A. Kleefeld, Analysis and computation of the transmission eigenvalues with a conductive boundary condition, Applicable Analysis, 101 (2022), 1880-1895. doi: 10.1080/00036811.2020.1789598.
    [14] I. Harris and A. Kleefeld, Analysis of new direct sampling indicators for far-field measurements, Inverse Problems, 35 (2019), 054002. doi: 10.1088/1361-6420/ab08be.
    [15] I. Harris and D.-L. Nguyen, Orthogonality sampling method for the electromagnetic inverse scattering problem, SIAM Journal on Scientific Computing, 42 (2020), B722-B737. doi: 10.1137/19M129783X.
    [16] I. Harris, D.-L. Nguyen and T.-P. Nguyen, Direct sampling methods for isotropic and anisotropic scatterers with point source measurements, Inverse Problems and Imaging, 16 (2022), 1137-1162. doi: 10.3934/ipi.2022015.
    [17] I. Harris and J. Rezac, A sparsity-constrained sampling method with applications to communications and inverse scattering, Journal of Computational Physics, 451, (2022), 110890. doi: 10.1016/j.jcp.2021.110890.
    [18] K. ItoB. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003.  doi: 10.1088/0266-5611/28/2/025003.
    [19] K. ItoB. Jin and J. Zou, A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29 (2013), 095018.  doi: 10.1088/0266-5611/29/9/095018.
    [20] K. ItoB. Jin and J. Zou, A two-stage method for inverse medium scattering, J. Comput. Phys., 237 (2013), 211-223.  doi: 10.1016/j.jcp.2012.12.004.
    [21] S. Kang and M. Lim, Monostatic sampling methods in limited-aperture configuration, Applied Mathematics and Computation, 427 (2022), 127170. doi: 10.1016/j.amc.2022.127170.
    [22] S. Kang and W.-K. Park, Application of MUSIC algorithm for identifying small perfectly conducting cracks in limited-aperture inverse scattering problem, Computers & Mathematics with Applications, 117 (2022), 97-112. doi: 10.1016/j.camwa.2022.04.015.
    [23] A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.
    [24] A. Kirsch A and N. Grinberg, The Factorization Method for Inverse Problems, 1st edition Oxford University Press, Oxford, 2008.
    [25] A. Kleefeld, The hot spots conjecture can be false: Some numerical examples, Advances in Computational Mathematics, 47 (2021), 85. doi: 10.1007/s10444-021-09911-5.
    [26] A. Lechleiter, A regularization technique for the factorization method, Inverse Problems, 22 (2006), 1605-1625. doi: 10.1088/0266-5611/22/5/006.
    [27] J. Li, Reverse time migration for inverse obstacle scattering with a generalized impedance boundary condition, Applicable Analysis, 101 (2022), 48-62. doi: 10.1080/00036811.2020.1727894.
    [28] J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Problems and Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.
    [29] X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011. doi: 10.1088/1361-6420/aa777d.
    [30] X. Liu, S. Meng and B. Zhang, Modified sampling method with near field measurements, SIAM J. Appl. Math., 82 (2022), 244-266. doi: 10.1137/21M1432235.
    [31] D.-L. Nguyen, Direct and inverse electromagnetic scattering problems for bi-anisotropic media, Inverse Problems, 35 (2019), 124001.  doi: 10.1088/1361-6420/ab382d.
    [32] D.-L. NguyenK. Stahl and T. Truong, A new sampling indicator function for stable imaging of periodic scattering media, Inverse Problems, 39 (2023), 065013.  doi: 10.1088/1361-6420/acce5f.
    [33] T.-P. Nguyen and B. Guzina, Generalized linear sampling method for the inverse elastic scattering of fractures in finite bodies, Inverse Problems, 35 (2019), 104002.  doi: 10.1088/1361-6420/ab2b18.
    [34] F. PourahmadianB. Guzina and H. Haddar, Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures, Inverse Problems, 33 (2017), 055007.  doi: 10.1088/1361-6420/33/5/055007.
  • 加载中

Figures(7)

Tables(1)

SHARE

Article Metrics

HTML views(1157) PDF downloads(237) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return