$ \delta $ | 0 | 1% | 2% | 3% | 4% | 5% |
$ \text{RE}^{\Omega}(u^e, u^{\beta, \delta}) $ | 0.0065 | 0.0098 | 0.0100 | 0.0102 | 0.0106 | 0.0107 |
$ \text{RE}^{\Omega_{\epsilon_0}}(\sigma^e, \sigma^{\beta, \delta}) $ | 0.2034 | 0.2322 | 0.2488 | 0.2958 | 0.3195 | 1.0731 |
Consider an inverse problem of recovering the medium conductivity governed by an elliptic system, with partial information of the solution specified in some internal domain as inversion input. We firstly establish the uniqueness of this inverse problem and the conditional stability of H$ \ddot{\text{o}} $lder type in internal domain in terms of the analytic extension of the solution. Then by representing the solution of the direct problem with variable coefficient under the Levi function framework, this nonlinear inverse problem is reformulated as solving a linear integral system provided that the boundary value of the conductivity be known. Then this linear system is regularized to deal with the ill-posedness of the function extension, with an efficient numerical realization scheme for seeking the regularizing solution firstly for the density pair and then for the conductivity to be recovered. Numerical implementations are presented to show the validity of the proposed scheme.
Citation: |
Table 1. Error distribution of reconstructions in terms of noise levels
$ \delta $ | 0 | 1% | 2% | 3% | 4% | 5% |
$ \text{RE}^{\Omega}(u^e, u^{\beta, \delta}) $ | 0.0065 | 0.0098 | 0.0100 | 0.0102 | 0.0106 | 0.0107 |
$ \text{RE}^{\Omega_{\epsilon_0}}(\sigma^e, \sigma^{\beta, \delta}) $ | 0.2034 | 0.2322 | 0.2488 | 0.2958 | 0.3195 | 1.0731 |
Table 2.
Relative errors for recovering
$ r_0 $ | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 |
$ \text{RE}^{\Omega}(u^e, u^n) $ | 0.0019 | 0.0065 | 0.0158 | 0.0268 | 0.0416 |
Table 3.
Relative errors for recovering
0.75 | 0.8 | 0.85 | 0.9 | |
0.8 | 0.1909 | 0.2244 | 0.2237 | 0.2034 |
0.7 | 0.3492 | 0.3279 | 0.3218 | 0.9721 |
0.6 | 0.4083 | 0.3652 | 0.4047 | 0.6686 |
0.5 | 0.4050 | 0.3882 | 0.5429 | 0.9738 |
Table 4.
Relative errors of recovering
$ \delta $ | 0 | 1% | 2% | 3% | 4% | 5% |
$ \text{RE}^{\Omega}(u^e, u^{\beta, \delta}) $ | 0.0010 | 0.0022 | 0.0023 | 0.0023 | 0.0024 | 0.0027 |
$ \text{RE}^{\Omega_{\epsilon_0}}(\sigma^e, \sigma^{\beta, \delta}) $ | 0.1631 | 0.2102 | 0.2111 | 0.2333 | 0.2777 | 0.3526 |
Table 5.
Relative errors for recovering
0.75 | 0.8 | 0.85 | 0.9 | |
0.8 | 0.1894 | 0.2138 | 0.2004 | 0.1631 |
0.7 | 0.2665 | 0.2528 | 0.2167 | 0.2241 |
0.6 | 0.3098 | 0.2932 | 0.2616 | 0.3497 |
0.5 | 0.3483 | 0.3784 | 0.3186 | 0.4119 |
[1] | A. E. Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Probl., 16 (2000), 651-663. doi: 10.1088/0266-5611/16/3/308. |
[2] | A. E. Badia, A. E. Hajj, M. Jazar and H. Moustafa, Logarithmic stability estimates for an inverse source problem from interior measurements, Appl. Anal., 97 (2018), 274-294. doi: 10.1080/00036811.2016.1260709. |
[3] | A. Beshley, R. Chapko and B. T. Johansson, An integral equation method for the numerical solution of a Dirichlet problem for second-order elliptic equations with variable coefficients, J. Engrg. Math., 112 (2018), 63-73. doi: 10.1007/s10665-018-9965-7. |
[4] | L. Borcea, Electrical impedance tomography, Inverse Probl., 18 (2002), 99-136. doi: 10.1088/0266-5611/18/6/201. |
[5] | R. Chapko and B. T. Johansson, On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach, Inverse Probl. Imag., 6 (2012), 25-38. doi: 10.3934/ipi.2012.6.25. |
[6] | J. Cheng and J. J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Probl., 24 (2008), 065012, 18 pp. doi: 10.1088/0266-5611/24/6/065012. |
[7] | J. Cheng and J. J. Liu, An inverse source problem for parabolic equations with local measurements, Appl. Math. Lett., 103 (2020), 106213, 7 pp. doi: 10.1016/j.aml.2020.106213. |
[8] | D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley $ & $ Sons, Inc., 1983. |
[9] | D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edition, Appl. Math. Sci., 93. Springer-Verlag, Berlin, Heidelberg, 1998. doi: 10.1007/978-3-662-03537-5. |
[10] | L. C. Evans, Partial Differential Equations, 2nd edition, Grad. Stud. Math., 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019. |
[11] | N. Honda, J. McLaughlin and G. Nakamura, Conditional stability for a single interior measurement, Inverse Probl., 30 (2014), 055001, 19 pp. doi: 10.1088/0266-5611/30/5/055001. |
[12] | L. H$\ddot{\text{o}}$rmander, The Analysis of Linear Partial Differential Operators. III, Springer-Verlag, Berlin, Heidelberg, 2007. |
[13] | V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Sci., 127. Springer, New York, 2006. |
[14] | R. Kress, Linear Integral Equations, 3rd edition, Appl. Math. Sci., 82. Springer, New York, 2014. doi: 10.1007/978-1-4614-9593-2. |
[15] | J. J. Liu, J. K. Seo, M. Sini and E. J. Woo, On the convergence of the harmonic $B_z$ algorithm in magnetic resonance electrical impedance tomography, SIAM J. Appl. Math., 67 (2007), 1259-1282. doi: 10.1137/060661892. |
[16] | S. E. Mikhailov, Analysis of united boundary-domain integro-differential and integral equations for a mixed BVP with variable coefficient, Math. Methods Appl. Sci., 29 (2006), 715-739. doi: 10.1002/mma.706. |
[17] | C. Miranda, Partial Differential Equations of Elliptic Type, 2nd edition, Springer-Verlag, New York, Berlin, 1970. |
[18] | A. Pomp, The Boundary-domain Integral Method for Elliptic Systems: With An Application to Shells, Lecture Notes in Math., 1683. Springer-Verlag, Berlin, 1998. doi: 10.1007/BFb0094576. |
[19] | G. R. Richter, An inverse problem for the steady state diffusion equation, SIAM J. Appl. Math., 41 (1981), 210-221. doi: 10.1137/0141016. |
[20] | C. P. Robert and G. Casella, Monte Carlo integration, Monte Carlo Statistical Methods, Springer-Verlag, New York, (1999), 71-138. |
[21] | J. K. Seo, S. W. Kim, S. Kim, J. J. Liu, E. J. Woo, K. Jeon and C. O. Lee, Local harmonic $B_z$ algorithm with domain decomposition in MREIT: Computer simulation, IEEE Trans. Med. Imaging, 27 (2008), 1754-1761. |
[22] | Y. Z. Song, R. Sadleir and J. J. Liu, Convergence analysis of the harmonic $B_z$ algorithm with single injection current in MREIT, SIAM J. Imaging Sci., 16 (2023), 706-739. doi: 10.1137/22M1505438. |
[23] | F. Triki and T. Yin, Inverse conductivity problem with internal data, J. Comput. Math., 41 (2023), 483-502. |
[24] | S. Vessella, A continuous dependence result in the analytic continuation problem, Forum Math., 11 (1999), 695-703. doi: 10.1515/form.1999.020. |
The exact solution of
Geometric setting
Extension of
Contrast of exact
Contrast of exact
Contrast of exact
Recovery of
Relative error of
Recovery of
Numerical solutions
Numerical solutions
The exact solution of conductivity
Recovery of
Contrast of exact
Contrast of exact
Contrast of exact
Recovery of
Relative error of
Recovery of