\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hopf's lemma and uniqueness of simultaneously determining source profile and Robin coefficient in a fractional diffusionequation by interior data

  • *Corresponding author: Zhiyuan Li

    *Corresponding author: Zhiyuan Li
Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • This paper is devoted to an inverse problem of simultaneously determining the spatially dependent source term and the Robin boundary coefficient in a time fractional diffusion equation, with the aid of extra measurement data at a subdomain near the accessible boundary. Firstly, the spatially varying source is uniquely determined in view of the unique continuation principle and Duhamel principle for the fractional diffusion equation. The Hopf lemma for a homogeneous time-fractional diffusion equation is proved and then used to prove the uniqueness of recovering the Robin boundary coefficient. Numerically, based on the theoretical uniqueness result, we apply the classical Tikhonov regularization method to transform the inverse problem into a minimization problem, which is solved by an iterative thresholding algorithm. Finally, several numerical examples are presented to show the accuracy and effectiveness of the proposed algorithm.

    Mathematics Subject Classification: Primary: 35R30, 35R11; Secondary: 47A52.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Exact and reconstructed solutions for Example 5.6: $ K = 20 $, $ e_f = 0.0450 $, $ e_\gamma = 0.0182 $

    Figure 2.  Exact and reconstructed solutions for Example 5.7: $ K = 25 $, $ e^K_f = 0.0389 $, $ e^K_\gamma = 0.0159 $

  • [1] R. A. Adams and  J. J. FournierSobolev Spaces, Academic press, 2003. 
    [2] M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.
    [3] R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol., 30 (1998), 133-155. 
    [4] J. V. Beck, B. Blackwell and R. St Clair Jr. Charles, Inverse Heat Conduction: Ill-posed Problems, James Beck, 1985.
    [5] D. A. BensonS. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412. 
    [6] H. Brezis, Functional Analysis, Sobolev spaces and Partial Differential Equations, Springer, 2011
    [7] J. CarcioneF. Sanchez-SesmaF. Luzón and J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media, Journal of Physics A: Mathematical and Theoretical, 46 (2013), 345501.  doi: 10.1088/1751-8113/46/34/345501.
    [8] H.-T. Chen and X.-Y. Wu, Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme, Internat. J. Numer. Methods Engrg., 73 (2008), 107-122.  doi: 10.1002/nme.2059.
    [9] J. Cheng JC.-L. Lin and G. Nakamura, Unique continuation property for the anomalous diffusion and its application, J. Differ. Equ., 254 (2013), 3715-3728.  doi: 10.1016/j.jde.2013.01.039.
    [10] P. ClémentS. O. Londen and G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Differential Equations, 196 (2004), 418-447.  doi: 10.1016/j.jde.2003.07.014.
    [11] I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 141-157.  doi: 10.1002/cpa.20042.
    [12] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3, Springer-Verlag, Berlin, 1990.
    [13] M. Giona and H. E. Roman, Fractional diffusion equation for transport phenomena in random media, Phys. A., 185 (1992), 82-97. 
    [14] R. GorenfloY. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal., 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.
    [15] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985.
    [16] X. HuangZ. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Problems, 35 (2019), 045003.  doi: 10.1088/1361-6420/ab0138.
    [17] D. Jiang, Z. Li, Y. Liu and M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations, Inverse Problems, 33 (2017), 055013, 22 pp. doi: 10.1088/1361-6420/aa58d1.
    [18] B. Jin and J. Zou, Numerical estimation of piecewise constant Robin coefficient, SIAM J. Control Optim., 48 (2009), 1977-2002.  doi: 10.1137/070710846.
    [19] Y. KianÉ. Soccorsi and F. Triki, Logarithmic stable recovery of the source and the initial state of time fractional diffusion equations, SIAM J. Math. Anal., 55 (2023), 3888-3902.  doi: 10.1137/22M1504743.
    [20] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [21] A. Kubica, K. Ryszewska and M. Yamamoto, Time-fractional Differential Equations A Theoretical Introduction, SpringerBriefs Math, Springer, Singapore, 2020. doi: 10.1007/978-981-15-9066-5.
    [22] A. Kubica and M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21 (2018), 276-311.  doi: 10.1515/fca-2018-0018.
    [23] M. Levy and B. Berkowitz, Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, Journal of Contaminant Hydrology, 64 (2003), 203-226. 
    [24] Z. LiX. Huang and M. Yamamoto, Initial-boundary value problem for the multi-term time-fractional diffusion equations with $x$-dependent coefficients, Evolution Equation and Control Theory, 9 (2020), 153-179.  doi: 10.3934/eect.2020001.
    [25] Z. LiY. Liu and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput., 257 (2015), 381-397.  doi: 10.1016/j.amc.2014.11.073.
    [26] Z. LiY. Liu and M. Yamamoto, Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions, Inverse Problems and Imaging, 17 (2023), 1-22.  doi: 10.3934/ipi.2022027.
    [27] Z. Li and M. Yamamoto, Unique continuation principle for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 22 (2019), 644-657.  doi: 10.1515/fca-2019-0036.
    [28] Z. Li and Z. Zhang, Unique determination of fractional order and source term in a fractional diffusion equation from sparse boundary data, Inverse Problems, 36 (2020), 115013, 20 pp. doi: 10.1088/1361-6420/abbc5d.
    [29] C.-L. Lin and G. Nakamura, Unique continuation property for anomalous slow diffusion equation, Comm. Partial Differential Equations, 41 (2016), 749-758.  doi: 10.1080/03605302.2015.1135164.
    [30] Y. Liu, Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem, Comput. Math. Appl., 73 (2017), 96-108.  doi: 10.1016/j.camwa.2016.10.021.
    [31] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223.  doi: 10.1016/j.jmaa.2008.10.018.
    [32] F. MainardiFractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.
    [33] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.
    [34] I. PodlubnyFractional Differential Equations, Academic Press, an Diego, 1999. 
    [35] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.
    [36] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Philadelphia, 1993.
    [37] M. Slodicka and D. Lesnic, Determination of the Robin coefficient in a nonlinear boundary condition for a steady-state problem, Math. Methods Appl. Sci., 32 (2009), 1311-1324.  doi: 10.1002/mma.1095.
    [38] T. Suzuki and M. Yamamoto, Observability, controllability, and feedback stabilizability for evolution equations, I., Japan J. Appl. Math., 2 (1985), 211-228.  doi: 10.1007/BF03167045.
    [39] J. WangY. Ran and Z. Yuan, Uniqueness and numerical scheme for the Robin coefficient identification of the time-fractional diffusion equation, Comput. Math. Appl., 75 (2018), 4107-4114.  doi: 10.1016/j.camwa.2018.03.017.
    [40] J. WangY. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 68 (2013), 39-57.  doi: 10.1016/j.apnum.2013.01.001.
    [41] T. WeiL. Sun and Y. Li, Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation, Appl. Math. Lett., 61 (2016), 108-113.  doi: 10.1016/j.aml.2016.05.004.
    [42] T. Wei and J. Wang, Determination of Robin coefficient in a fractional diffusion problem, Appl. Math. Modelling, 40 (2016), 7948-7961.  doi: 10.1016/j.apm.2016.03.046.
    [43] T. Wei and Z. Zhang, Robin coefficient identification for a time-fractional diffusion equation, Inverse Probl. Sci. Eng., 24 (2016), 647-666.  doi: 10.1080/17415977.2015.1055261.
    [44] F. White, Heat and Mass Transfer, Addison-Wesley, 1988.
    [45] X. XuJ. Cheng and M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.  doi: 10.1080/00036811.2010.507199.
    [46] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013.  doi: 10.1088/0266-5611/25/12/123013.
    [47] X. Yang and Z. Li, Strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations, preprint, 2021, arXiv: 2104.08434.
    [48] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.
    [49] M. Zhang and J. Liu, On the simultaneous reconstruction of boundary Robin coefficient and internal source in a slow diffusion system, Inverse Problems, 37 (2021), 075008.  doi: 10.1088/1361-6420/ac0967.
    [50] Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010.  doi: 10.1088/0266-5611/27/3/035010.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(865) PDF downloads(375) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return