\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Range characterization of ray transform on Sobolev spaces of symmetric tensor fields

  • *Corresponding author: Venkateswaran P. Krishnan

    *Corresponding author: Venkateswaran P. Krishnan 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The ray transform $ I $ integrates symmetric $ m $-tensor field in $ \mathbb{R}^n $ over lines. This transform on Sobolev spaces was studied in two earlier works of the second author where Reshetnyak formulas (isometry relations) and range characterization of ray transform of functions in dimensions $ n\geq 3 $ were established. The main focus of the current work is range characterization of ray transform of symmetric tensor fields on Sobolev spaces generalizing the earlier result proved for the case of functions. In dimensions $ n\geq 3 $, range characterization of the ray transform in Schwartz spaces is well-known; the main ingredient of the characterization is a system of linear differential equations of order $ 2(m+1) $ called John equations. Using zeroth order Reshetnyak formulas, the range of the ray transform on Sobolev spaces is characterized in dimensions $ n\geq 3 $ in this paper.

    Mathematics Subject Classification: Primary: 44A12, 65R32; Secondary: 46F12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Denisiuk, On range conditions of the tensor x-ray transform in ${\mathbb R}^n$, Inverse Probl. Imaging, 14 (2020), 423-435.  doi: 10.3934/ipi.2020020.
    [2] I. M. Gel'fandM. I. Graev and  N. Ya. VilenkinGeneralized Functions. Vol. 5: Integral Geometry and Representation Theory, Academic Press, 1966. 
    [3] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math., 113 (1965), 153-180.  doi: 10.1007/BF02391776.
    [4] S. Helgason, The Radon Transform, Progr. Math., 5. Birkhäuser Boston, Inc., Boston, MA, 1999 doi: 10.1007/978-1-4757-1463-0.
    [5] L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Classics in Mathematics. Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.
    [6] F. John, The ultrahyperbolic differential equation with four independent variables, Duke Math. J., 4 (1938), 300-322.  doi: 10.1215/S0012-7094-38-00423-5.
    [7] V. P. KrishnanR. MannaS. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, Inverse Probl. Imaging, 13 (2019), 679-701.  doi: 10.3934/ipi.2019031.
    [8] V. P. Krishnan, R. Manna, S. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, II: range characterization in the Schwartz space, Inverse Problems, 36 (2020), 045009, 33 pp. doi: 10.1088/1361-6420/ab6a65.
    [9] V. P. Krishnan and V. A. Sharafutdinov, Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas, Inverse Probl. Imaging, 16 (2022), 787-826.  doi: 10.3934/ipi.2021076.
    [10] N. Nadirashvili, V. Sharafutdinov and S. Vladuts, The John equation in tensor tomography in three dimensions, Inverse Problems, 32 (2016), 105013, 15 pp doi: 10.1088/0266-5611/32/10/105013.
    [11] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.
    [12] E. Yu. Pantjukhina, Description of the range of X-ray transform in two-dimensional case, Methods of Solutions of Inverse Problems, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, (1990), 80-89.
    [13] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-posed Problems Series. VSP, Utrecht, 1994. doi: 10.1515/9783110900095.
    [14] V. A. Sharafutdinov, Radon transform on Sobolev spaces, Sib. Math. J., 62 (2021), 560-580.  doi: 10.1134/S0037446621030198.
    [15] V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002, 20 pp. doi: 10.1088/1361-6420/33/2/025002.
    [16] V. A. Sharafutdinov, X-ray transform on Sobolev spaces, Inverse Problems, 37 (2021), Paper No. 015007, 25 pp. doi: 10.1088/1361-6420/abb5e0.
  • 加载中
SHARE

Article Metrics

HTML views(1586) PDF downloads(246) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return