\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Superresolution with the zero-phase imaging condition

  • *Corresponding author: Sarah Greer

    *Corresponding author: Sarah Greer 
Abstract / Introduction Full Text(HTML) Figure(8) Related Papers Cited by
  • Wave-based imaging techniques use wavefield data from receivers on the boundary of a domain to produce an image of the underlying structure in the domain of interest. These images are defined by the imaging condition, which maps recorded data to their reflection points in the domain. In this paper, we introduce a nonlinear modification to the standard imaging condition that can produce images with resolutions greater than that ordinarily expected using the standard imaging condition. We show that the phase of the integrand of the imaging condition, in the Fourier domain, has a special significance in some settings that can be exploited to derive a super-resolved modification of the imaging condition. Whereas standard imaging techniques can resolve features of a length scale of $ \lambda $, our technique allows for resolution level $ R < \lambda $, where the super-resolution factor (SRF) is typically $ \lambda/R $. We show that, in the presence of noise, $ R \sim \sigma $.

    Mathematics Subject Classification: Primary: 35R30, 35L05; Secondary: 86-08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The phase derivative as a function of $ t $, which represents distance to the scatterer, located at $ t = 0 $. The two black dashed lines bound the possible values of $ \frac{\partial \tilde{\theta}}{\partial \omega} $ in the presence of noise. From this, the operator $ \Gamma(\cdot) $, which acts on the phase derivative $ \frac{\partial \tilde{\theta}}{\partial \omega} $, allows full contribution to the image when $ t < \tau_{_{RES}} -c\sigma $, and zero contribution to the image when $ t > \tau_{_{RES}} + c\sigma $

    Figure 2.  The mean resolved size of the scatterer, $ R $, as a function of $ \tau_{_{RES}} $ for various values of $ \sigma $

    Figure 3.  The resolved size of the scatterer as a function of $ \sigma $ using the best $ \tau_{_{RES}} $. Green points represent individual samples corresponding to different noise realizations, red points represent the mean for that noise value, and the blue line is fits the data with an $ r^2 $ value of $ 0.988 $. The teal line represents the resolution with the standard imaging condition, which is calculated to be $ 0.273 \;\lambda $ (calculated from footnote 2), where $ \lambda $ is the wavelength. The numerical grid spacing for the experiments was $ 2.5 $ m, which limits the minimum resolvable size of the scatterer

    Figure 4.  A velocity model with a scatterer located at $ (200\; m, 1200\; m) $ (left), an image produced with the standard imaging condition (center), and an image produced with the zero-phase imaging condition (right)

    Figure 5.  A more complex example using the zero-phase imaging condition using zero-mean oscillatory reflection interfaces. (a) ground truth velocity model; (b) resultant image using the standard imaging condition; (c) resultant image using the zero-phase imaging condition with $ \tau_{_{RES}} = 0.02\;s $; (d) resultant image using the zero-phase imaging condition with $ \tau_{_{RES}} = 0.01\;s $

    Figure 6.  A more complex example using the zero-phase imaging condition using non-zero-mean oscillatory reflection interfaces. (a) ground truth velocity model; (b) resultant image using the standard imaging condition; (c) resultant image using the zero-phase imaging condition with $ \tau_{_{RES}} = 0.02\;s $; (d) resultant image using the zero-phase imaging condition with $ \tau_{_{RES}} = 0.01\;s $. This is comparable to Figure 5

    Figure 7.  An example introducing caustics into the data. (a) ground truth velocity model, where the migration velocity model includes the lens without the scatterer located at (1000, 0); (b) resultant image using the standard imaging condition; (c) resultant image using the zero-phase imaging condition with $ \tau_{_{RES}} = 0.01 $ s

    Figure 8.  The ray through a source located at $ {\mathbf{x}}_s $ and a scatterer located at $ {\mathbf{x}}^* $ indicates where the phase of the integrand of the imaging condtion (Equation 6) will be zero. With a special receiver $ {\mathbf{x}}_{\widetilde{r}} $ antipodal to a given source location $ {\mathbf{x}}_s $, the locus of zero phase when $ \psi_+ ({\mathbf{x}}) = 0 $ is when $ {\mathbf{x}} \in [{\mathbf{x}}^*, {\mathbf{x}}_{\widetilde{r}}] $, and the locus of zero phase for when $ \psi_- ({\mathbf{x}}) = 0 $ is when $ {\mathbf{x}}^* \in [{\mathbf{x}}_s, {\mathbf{x}}^*] $. Therefore, we restrict our receiver array such there is no receiver antipodal to any source location through the scatterer location to avoid including this transmission artifact in the zero-phase imaging condition

  • [1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I, Springer, 1999, 276. doi: 10.1007/978-1-4757-3069-2.
    [2] G. Beylkin, The inversion problem and applications of the generalized radon transform, Communications on Pure and Applied Mathematics, 37 (1984), 579-599.  doi: 10.1002/cpa.3160370503.
    [3] E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution, Communications on Pure and Applied Mathematics, 67 (2014), 906-956.  doi: 10.1002/cpa.21455.
    [4] M. Cheney and B. Borden, Fundamentals of Radar Imaging, Society for Industrial and Applied Mathematics, 2009. doi: 10.1137/1.9780898719291.
    [5] L. Demanet and N. Nguyen, The recoverability limit for superresolution via sparsity, CoRR, arXiv: 1502.01385.
    [6] D. L. Donoho, Superresolution via sparsity constraints, SIAM Journal on Mathematical Analysis, 23 (1992), 1309-1331. doi: 10.1137/0523074.
    [7] D. L. DonohoI. M. JohnstoneJ. C. Hoch and A. S. Stern, Maximum entropy and the nearly black object, Journal of the Royal Statistical Society: Series B (Methodological), 54 (1992), 41-67.  doi: 10.1111/j.2517-6161.1992.tb01864.x.
    [8] D. L. Donoho and J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 9446-9451.  doi: 10.1073/pnas.0502269102.
    [9] J.-J. Fuchs, Sparsity and uniqueness for some specific under-determined linear systems, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, V (2005), 729-732.  doi: 10.1109/ICASSP.2005.1416407.
    [10] Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions on Acoustics, Speech, and Signal Processing, 38 (1990), 814-824.  doi: 10.1109/29.56027.
    [11] W. Liao and A. Fannjiang, Music for single-snapshot spectral estimation: Stability and super-resolution, Applied and Computational Harmonic Analysis, 40 (2016), 33-67.  doi: 10.1016/j.acha.2014.12.003.
    [12] Y. LouP. Yin and J. Xin, Point source super-resolution via non-convex L1 based methods, Journal of Scientific Computing, 68 (2016), 1082-1100.  doi: 10.1007/s10915-016-0169-x.
    [13] N. Nguyen and L. Demanet, Sparse image super-resolution via superset selection and pruning, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP, 2013,208-211. doi: 10.1109/CAMSAP.2013.6714044.
    [14] R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, 167 (2006), 495-503.  doi: 10.1111/j.1365-246X.2006.02978.x.
    [15] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, 34 (1986), 276-280. doi: 10.1109/TAP.1986.1143830.
    [16] A. A. Valenciano and B. Biondi, Deconvolution imaging condition for reverse-time migration, Stanford Exploration Project, Report, 112 (2002), 83-96, URL http://sepwww.stanford.edu/data/media/public/docs/sep112/alejandro1.pdf.
    [17] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, 1999. doi: 10.1002/9781118032954.
  • 加载中

Figures(8)

SHARE

Article Metrics

HTML views(1288) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return