\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Simultaneously identifying piecewise smooth conductivity and initial value for a heat conduction equation

  • *Corresponding author: Haibing Wang

    *Corresponding author: Haibing Wang

The first author was supported by National Natural Science Foundation of China (No. 12071072) and China Scholarship Council (No. 202106090240). The second author was supported by the JSPS KAKENHI (Grant Numbers JP19K03554 and 22K03366). The third author was supported by National Natural Science Foundation of China (Nos. 12071072, 12241102). This work was also supported by the Jiangsu Provincial Scientific Research Center of Applied Mathematics under Grant No. BK20233002.

Abstract / Introduction Full Text(HTML) Figure(6) / Table(2) Related Papers Cited by
  • The paper considers an inverse problem of simultaneously identifying the piecewise smooth conductivity and initial value of a heat conduction equation defined over a domain $ \Omega $ from the measurement at a fixed time and the Cauchy data on a part of the boundary of $ \Omega $. First, we analyze the regularity of the solution for the forward problem, especially the regularity of the solution near the interface where the conductivity is discontinuous. Then, based on this regularity, we prove the conditional stability by combining the logarithmic convexity theory and the conditional stability of identifying the conductivity. Upon having the uniqueness and conditional stability, we study the inverse problem numerically, which is to transform it into a minimization problem. The existence and stability results of the minimizer are rigorously analyzed. By decomposing the minimization problem into a solve-mark-refine-looping scheme, we propose an iterative algorithm with an adaptively matching regularization to preserve the smoothness and discontinuity of the conductivity, respectively. This algorithm is efficient and easy to implement numerically. Finally, we present two-dimensional and three-dimensional numerical examples to show the performance of the proposed algorithm.

    Mathematics Subject Classification: Primary: 35R30; Secondary: 35K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Geometric situation of the piecewise smooth conductivity

    Figure 2.  The exact solutions of Example 1

    Figure 3.  Numerical results of Example 1 for different noise levels (from the first row to the last row, $ \epsilon = 0.001, \, 0.005, \, 0.01, \, 0.05 $, respectively): the first and second columns show the reconstructions of $ q^{k+1} $ and $ \varphi^{k+1} $, respectively, the third column displays the adaptive indices $ \chi_{\Omega^s}^{k+1} $ defined by (64), and the last column shows the slices of $ q^{k+1} $ along $ x_2 = 0 $

    Figure 4.  The exact solutions of Example 2

    Figure 5.  Numerical results of Example 2 for different noise levels (from the first row to the last row, $ \epsilon = 0.001, \, 0.005, \, 0.01, \, 0.05 $, respectively): the first and second columns show the reconstructions of $ q^{k+1} $ and $ \varphi^{k+1} $, respectively, the third column displays the adaptive indices $ \chi_{\Omega^s}^{k+1} $ defined by (64), and the last column shows the slices of $ q^{k+1} $ along $ x_2 = 0 $

    Figure 6.  The exact solutions and the reconstructions of Example 3 at three slices along different directions for $ \epsilon = 0.001 $

    Table 1.  Numerical results of Example 1 for different noise levels

    $\epsilon$ $ (\beta, \, \gamma)$ $(\varepsilon_1, \, \varepsilon_2)$ $RelErr_q$ $RelErr_\varphi$ Figure
    0.001 (0.008, 0.0001) (0.0001, 0.002) 2.8775e-02 2.9445e-02 Fig. 3 (A)–(D)
    0.005 (0.01, 0.0001) (0.0001, 0.002) 3.4949e-02 3.0530e-02 Fig. 3 (E)–(H)
    0.01 (0.01, 0.0001) (0.0001, 0.005) 4.3614e-02 2.3588e-02 Fig. 3 (I)–(L)
    0.05 (0.03, 0.0001) (0.0001, 0.005) 4.4124e-02 2.8089e-02 Fig. 3 (M)–(P)
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical results of Example 2 for different noise levels

    $ \epsilon$ $(\beta, \, \gamma)$ $(\varepsilon_1, \, \varepsilon_2)$ $RelErr_q$ $RelErr_\varphi$ Figure
    0.001 (0.008, 0.0001) (0.0001, 0.002) 2.0766e-02 4.5529e-02 Fig. 5 (A)–(D)
    0.005 (0.01, 0.0001) (0.0001, 0.002) 2.6773e-02 4.5755e-02 Fig. 5 (E)–(H)
    0.01 (0.01, 0.0001) (0.0001, 0.005) 3.5652e-02 4.6567e-02 Fig. 5 (I)–(L)
    0.05 (0.03, 0.0001) (0.0001, 0.005) 4.9123e-02 5.0302e-02 Fig. 5 (M)–(P)
     | Show Table
    DownLoad: CSV
  • [1] U. M. AscherE. Haber and H. Huang, On effective methods for implicit piecewise smooth surface recovery, SIAM J. Sci. Comput., 28 (2006), 339-358.  doi: 10.1137/040617261.
    [2] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, SIAM, Philadelphia, PA, 2006. doi: 10.1137/1.9780898718782.
    [3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York, (2002). doi: 10.1007/b97428.
    [4] A. BenabdallahP. Gaitan and J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., 46 (2007), 1849-1881.  doi: 10.1137/050640047.
    [5] X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.
    [6] X. Cao and H. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861-1876.  doi: 10.4310/CMS.2019.v17.n7.a5.
    [7] J. Cheng and J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008), 065012.  doi: 10.1088/0266-5611/24/6/065012.
    [8] I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.
    [9] A. P. de AlmeidaC. P. Naveira-Cotta and R. M. Cotta, Transient three-dimensional heat conduction in heterogeneous media: Integral transforms and single domain formulation, Int. Commun. Heat Mass, 117 (2020), 104792.  doi: 10.1016/j.icheatmasstransfer.2020.104792.
    [10] A. Elayyan and V. Isakov, On uniqueness of recovery of the discontinuous conductivity coefficient of a parabolic equation, SIAM J. Math. Anal., 28 (1997), 49-59.  doi: 10.1137/S0036141095286010.
    [11] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, , Kluwer Academic Publishers, Dordrecht, 1996. doi: 10.1007/978-94-009-1740-8.
    [12] H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Problems, 16 (2000), 1907-1923.  doi: 10.1088/0266-5611/16/6/319.
    [13] L. C. Evans, Partial Differential Equations, 2$^{nd}$ Edition, American Mathematical Society, Providence, RI, 2010.
    [14] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
    [15] B. Guo and J. Zou, An augmented Lagrangian method for parameter identifications in parabolic systems, J. Math. Anal. Appl., 263 (2001), 49-68.  doi: 10.1006/jmaa.2001.7593.
    [16] S. Gutman, Identification of discontinuous parameters in flow equation, SIAM J. Control Optim., 28 (1990), 1049-1060.  doi: 10.1137/0328057.
    [17] D. N. Hào, A mollification method for ill-posed problems, Numer. Math., 68 (1994), 469-506.  doi: 10.1007/s002110050073.
    [18] D. N. HàoV. D. Nguyen and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method, IMA J. Appl. Math., 75 (2010), 291-315.  doi: 10.1093/imamat/hxp026.
    [19] A. HasanovP. DuChateau and B Pektaş, An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation, J. Inverse Ill-Posed Probl., 14 (2006), 435-463.  doi: 10.1515/156939406778247615.
    [20] V. Isakov, Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems, 9 (1993), 579-621.  doi: 10.1088/0266-5611/9/6/001.
    [21] V. Isakov, Inverse Problems for Partial Differential Equations, 3$^{rd}$ Edition, Springer, Cham, 2017. doi: 10.1007/978-3-319-51658-5.
    [22] K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9120.
    [23] D. JiangH. Feng and J. Zou, Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse Robin problems, ESAIM Math. Model. Numer. Anal., 52 (2018), 1085-1107.  doi: 10.1051/m2an/2018016.
    [24] B. Jin and Z. Zhou, Error analysis of finite element approximations of diffusion coefficient identification for elliptic and parabolic problems, SIAM J. Numer. Anal., 59 (2021), 119-142.  doi: 10.1137/20M134383X.
    [25] B. Jin and Z. Zhou, Numerical estimation of a diffusion coefficient in subdiffusion, SIAM J. Control Optim., 59 (2021), 1466-1496.  doi: 10.1137/19M1295088.
    [26] B. T. JohanssonD. Lesnic and T. Reeve, A method of fundamental solutions for radially symmetric and axisymmetric backward heat conduction problems, Int. J. Comput. Math., 89 (2012), 1555-1568.  doi: 10.1080/00207160.2012.680448.
    [27] Y. KianZ. LiY. Liu and M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann., 380 (2021), 1465-1495.  doi: 10.1007/s00208-020-02027-z.
    [28] K. Kunisch and L. White, The parameter estimation problem for parabolic equations and discontinuous observation operators, SIAM J. Control Optim., 23 (1985), 900-927.  doi: 10.1137/0323052.
    [29] J. LiH. Liu and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.  doi: 10.1137/18M1225276.
    [30] J. LiH. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, Comm. Math. Phys., 381 (2021), 527-556.  doi: 10.1007/s00220-020-03889-9.
    [31] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. II, Translated From the French by P. Kenneth. Die Grundlehren Der Mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, (1972).
    [32] H. Liu and S. Ma, Inverse problem for a random Schrödinger equation with unknown source and potential, Math. Z., 304 (2023), 28.  doi: 10.1007/s00209-023-03289-4.
    [33] T. K. Nilssen and X. Tai, Parameter estimation with the augmented Lagrangian method for a parabolic equation, J. Optim. Theory Appl., 124 (2005), 435-453.  doi: 10.1007/s10957-004-0944-y.
    [34] I. PeraltaV. D. Fachinotti and J. C. Alvarez Hostos, A brief review on thermal metamaterials for cloaking and heat flux manipulation, Adv. Eng. Mater., 22 (2020), 1901034.  doi: 10.1002/adem.201901034.
    [35] O. Poisson, Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation, Inverse Problems, 24 (2008), 025012.  doi: 10.1088/0266-5611/24/2/025012.
    [36] R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.  doi: 10.1016/0022-247X(74)90008-0.
    [37] F. Triki, Coefficient identification in parabolic equations with final data, J. Math. Pures Appl. (9), 148 (2021), 342-359.  doi: 10.1016/j.matpur.2021.02.004.
    [38] T. Wei and J. Xian, Variational method for a backward problem for a time-fractional diffusion equation, ESAIM Math. Model. Numer. Anal., 53 (2019), 1223-1244.  doi: 10.1051/m2an/2019019.
    [39] J. Wloka, Partial Differential Equations, Cambridge University Press, New York, 1982.
    [40] G. Yuan and M. Yamamoto, Lipschitz stability in the determination of the principal part of a parabolic equation, ESAIM Control Optim. Calc. Var., 15 (2009), 525-554.  doi: 10.1051/cocv:2008043.
    [41] Y. Zhang, Transmission Problems for Parabolic Equations and Applications to the Finite Element Method, Ph.D. thesis, Pennsylvania State University, (2017).
  • 加载中

Figures(6)

Tables(2)

SHARE

Article Metrics

HTML views(1484) PDF downloads(273) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return