[1]
|
U. M. Ascher, E. Haber and H. Huang, On effective methods for implicit piecewise smooth surface recovery, SIAM J. Sci. Comput., 28 (2006), 339-358.
doi: 10.1137/040617261.
|
[2]
|
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, SIAM, Philadelphia, PA, 2006.
doi: 10.1137/1.9780898718782.
|
[3]
|
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York, (2002).
doi: 10.1007/b97428.
|
[4]
|
A. Benabdallah, P. Gaitan and J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., 46 (2007), 1849-1881.
doi: 10.1137/050640047.
|
[5]
|
X. Cao, Y.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.
doi: 10.3934/ipi.2019011.
|
[6]
|
X. Cao and H. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861-1876.
doi: 10.4310/CMS.2019.v17.n7.a5.
|
[7]
|
J. Cheng and J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008), 065012.
doi: 10.1088/0266-5611/24/6/065012.
|
[8]
|
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems, Comm. Pure Appl. Math., 57 (2004), 1413-1457.
doi: 10.1002/cpa.20042.
|
[9]
|
A. P. de Almeida, C. P. Naveira-Cotta and R. M. Cotta, Transient three-dimensional heat conduction in heterogeneous media: Integral transforms and single domain formulation, Int. Commun. Heat Mass, 117 (2020), 104792.
doi: 10.1016/j.icheatmasstransfer.2020.104792.
|
[10]
|
A. Elayyan and V. Isakov, On uniqueness of recovery of the discontinuous conductivity coefficient of a parabolic equation, SIAM J. Math. Anal., 28 (1997), 49-59.
doi: 10.1137/S0036141095286010.
|
[11]
|
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, , Kluwer Academic Publishers, Dordrecht, 1996.
doi: 10.1007/978-94-009-1740-8.
|
[12]
|
H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Problems, 16 (2000), 1907-1923.
doi: 10.1088/0266-5611/16/6/319.
|
[13]
|
L. C. Evans, Partial Differential Equations, 2$^{nd}$ Edition, American Mathematical Society, Providence, RI, 2010.
|
[14]
|
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
|
[15]
|
B. Guo and J. Zou, An augmented Lagrangian method for parameter identifications in parabolic systems, J. Math. Anal. Appl., 263 (2001), 49-68.
doi: 10.1006/jmaa.2001.7593.
|
[16]
|
S. Gutman, Identification of discontinuous parameters in flow equation, SIAM J. Control Optim., 28 (1990), 1049-1060.
doi: 10.1137/0328057.
|
[17]
|
D. N. Hào, A mollification method for ill-posed problems, Numer. Math., 68 (1994), 469-506.
doi: 10.1007/s002110050073.
|
[18]
|
D. N. Hào, V. D. Nguyen and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method, IMA J. Appl. Math., 75 (2010), 291-315.
doi: 10.1093/imamat/hxp026.
|
[19]
|
A. Hasanov, P. DuChateau and B Pektaş, An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation, J. Inverse Ill-Posed Probl., 14 (2006), 435-463.
doi: 10.1515/156939406778247615.
|
[20]
|
V. Isakov, Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems, 9 (1993), 579-621.
doi: 10.1088/0266-5611/9/6/001.
|
[21]
|
V. Isakov, Inverse Problems for Partial Differential Equations, 3$^{rd}$ Edition, Springer, Cham, 2017.
doi: 10.1007/978-3-319-51658-5.
|
[22]
|
K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9120.
|
[23]
|
D. Jiang, H. Feng and J. Zou, Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse Robin problems, ESAIM Math. Model. Numer. Anal., 52 (2018), 1085-1107.
doi: 10.1051/m2an/2018016.
|
[24]
|
B. Jin and Z. Zhou, Error analysis of finite element approximations of diffusion coefficient identification for elliptic and parabolic problems, SIAM J. Numer. Anal., 59 (2021), 119-142.
doi: 10.1137/20M134383X.
|
[25]
|
B. Jin and Z. Zhou, Numerical estimation of a diffusion coefficient in subdiffusion, SIAM J. Control Optim., 59 (2021), 1466-1496.
doi: 10.1137/19M1295088.
|
[26]
|
B. T. Johansson, D. Lesnic and T. Reeve, A method of fundamental solutions for radially symmetric and axisymmetric backward heat conduction problems, Int. J. Comput. Math., 89 (2012), 1555-1568.
doi: 10.1080/00207160.2012.680448.
|
[27]
|
Y. Kian, Z. Li, Y. Liu and M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann., 380 (2021), 1465-1495.
doi: 10.1007/s00208-020-02027-z.
|
[28]
|
K. Kunisch and L. White, The parameter estimation problem for parabolic equations and discontinuous observation operators, SIAM J. Control Optim., 23 (1985), 900-927.
doi: 10.1137/0323052.
|
[29]
|
J. Li, H. Liu and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.
doi: 10.1137/18M1225276.
|
[30]
|
J. Li, H. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, Comm. Math. Phys., 381 (2021), 527-556.
doi: 10.1007/s00220-020-03889-9.
|
[31]
|
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. II, Translated From the French by P. Kenneth. Die Grundlehren Der Mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, (1972).
|
[32]
|
H. Liu and S. Ma, Inverse problem for a random Schrödinger equation with unknown source and potential, Math. Z., 304 (2023), 28.
doi: 10.1007/s00209-023-03289-4.
|
[33]
|
T. K. Nilssen and X. Tai, Parameter estimation with the augmented Lagrangian method for a parabolic equation, J. Optim. Theory Appl., 124 (2005), 435-453.
doi: 10.1007/s10957-004-0944-y.
|
[34]
|
I. Peralta, V. D. Fachinotti and J. C. Alvarez Hostos, A brief review on thermal metamaterials for cloaking and heat flux manipulation, Adv. Eng. Mater., 22 (2020), 1901034.
doi: 10.1002/adem.201901034.
|
[35]
|
O. Poisson, Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation, Inverse Problems, 24 (2008), 025012.
doi: 10.1088/0266-5611/24/2/025012.
|
[36]
|
R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0.
|
[37]
|
F. Triki, Coefficient identification in parabolic equations with final data, J. Math. Pures Appl. (9), 148 (2021), 342-359.
doi: 10.1016/j.matpur.2021.02.004.
|
[38]
|
T. Wei and J. Xian, Variational method for a backward problem for a time-fractional diffusion equation, ESAIM Math. Model. Numer. Anal., 53 (2019), 1223-1244.
doi: 10.1051/m2an/2019019.
|
[39]
|
J. Wloka, Partial Differential Equations, Cambridge University Press, New York, 1982.
|
[40]
|
G. Yuan and M. Yamamoto, Lipschitz stability in the determination of the principal part of a parabolic equation, ESAIM Control Optim. Calc. Var., 15 (2009), 525-554.
doi: 10.1051/cocv:2008043.
|
[41]
|
Y. Zhang, Transmission Problems for Parabolic Equations and Applications to the Finite Element Method, Ph.D. thesis, Pennsylvania State University, (2017).
|