\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linearization-based direct reconstruction for EIT using triangular Zernike decompositions

  • *Corresponding author: Nuutti Hyvönen

    *Corresponding author: Nuutti Hyvönen

This work was supported by the Academy of Finland (decisions 353080, 353081, 358944) and the Aalto Science Institute (AScI). HG was supported by grant 10.46540/3120-00003B from Independent Research Fund Denmark | Natural Sciences.

Abstract / Introduction Full Text(HTML) Figure(9) / Table(4) Related Papers Cited by
  • This work implements and numerically tests the direct reconstruction algorithm introduced in [Garde & Hyvönen, SIAM J. Math. Anal., 56, 3588-3604, 2024] for two-dimensional linearized electrical impedance tomography. Although the algorithm was originally designed for a linearized setting, we numerically demonstrate its functionality when the input data is the corresponding change in the current-to-voltage boundary operator. Both idealized continuum model and practical complete electrode model measurements are considered in the numerical studies, with the examined domain being either the unit disk or a convex polygon. Special attention is paid to regularizing the algorithm and its connections to the singular value decomposition of a truncated linearized forward map, as well as to the explicit triangular structures originating from the properties of the employed Zernike polynomial basis for the conductivity.

    Mathematics Subject Classification: Primary: 65N21, 65N20; Secondary: 35R30, 35R25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The structure of $ F^M $, for $ M = 10 $, as a block diagonal matrix with lower triangular blocks

    Figure 2.  The radial components of certain right singular functions and the first hundred singular values of $ F^M $ for $ M = 32 $

    Figure 3.  Reconstructions of a discoidal inclusion inside the unit disk from highly accurate data generated using a Möbius transformation with $ M = 32 $

    Figure 4.  The accepted Zernike indices for the reconstructions in Fig 3

    Figure 5.  Reconstructions of a wave-like conductivity perturbation in the unit disk with $ M = 32 $

    Figure 6.  An SVD-based reconstruction of a smooth conductivity perturbation in a square for $ M = 32 $, $ \omega = 2 $ and $ 1\% $ of additive noise, resulting in $ p = 163 $ and the smallest accepted singular value $ 0.0099 $

    Figure 7.  An SVD-based reconstruction of a smooth conductivity perturbation in a polygon for $ M = 32 $, $ \omega = 1 $ and $ 1\% $ of additive noise, resulting in $ p = 145 $ and the smallest accepted singular value $ 0.020 $

    Figure 8.  An SVD-based reconstruction of a smooth conductivity perturbation from simulated CEM data with 32 electrodes, $ M = 16 $, $ \omega = 1 $ and $ 1\% $ of additive noise, resulting in $ p = 108 $ and the smallest accepted singular value $ 0.0016 $

    Figure 9.  Three SVD-based reconstructions with $ M = 8 $ from real-world water tank difference data measured at 16 equiangular electrodes. For each target, the 'optimal' truncation index $ p $ has been chosen according to a visual inspection. Top: the targets. Bottom: the reconstructions

    Table 1.  The real parts of the first nine right singular functions of $ F^M $ for $ M = 32 $

     | Show Table
    DownLoad: CSV

    Table 2.  The imaginary parts of the first nine right singular functions of $ F^M $ for $ M = 32 $

     | Show Table
    DownLoad: CSV

    Table 3.  The real parts of the first seven right singular functions of $ F^M $ that are linear combinations of Zernike polynomials for some already visited angular index $ j $ with $ M = 32 $

     | Show Table
    DownLoad: CSV

    Table 4.  The imaginary parts of the first seven right singular functions of $ F^M $ that are linear combinations of Zernike polynomials for some already visited angular index $ j $ with $ M = 32 $

     | Show Table
    DownLoad: CSV
  • [1] A. Allers and F. Santosa, Stability and resolution analysis of a linearized problem in electrical impedance tomography, Inverse Problems, 7 (1991), 515-533.  doi: 10.1088/0266-5611/7/4/003.
    [2] L. Borcea, Electrical impedance tomography, Inverse problems, 18 (2002), R99-R136. doi: 10.1088/0266-5611/18/6/201.
    [3] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73.
    [4] M. CheneyD. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.
    [5] K.-S. ChengD. IsaacsonJ. S. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924.  doi: 10.1109/10.35300.
    [6] T. A. Driscoll, Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping, ACM Trans. Math. Soft., 22 (1996), 168-186.  doi: 10.1145/229473.229475.
    [7] H. Garde, Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations, Inverse Probl. Sci. Eng., 26 (2018), 33-50.  doi: 10.1080/17415977.2017.1290088.
    [8] H. Garde and N. Hyvönen, Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numer. Math., 147 (2021), 579-609.  doi: 10.1007/s00211-020-01170-8.
    [9] H. Garde and N. Hyvönen, Series reversion in Calderón's problem, Math. Comp., 91 (2022), 1925-1953.  doi: 10.1090/mcom/3729.
    [10] H. Garde and N. Hyvönen, Linearised Calderón problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations, SIAM J. Math. Anal., 56 (2024), 3588-3604.  doi: 10.1137/23M1609270.
    [11] T. Gustafsson and G. D. McBain, scikit-fem: A Python package for finite element assembly, J. Open Source Softw., 5 (2020), 2369.  doi: 10.21105/joss.02369.
    [12] B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518.  doi: 10.1137/090773970.
    [13] A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2{D} electrical impedance tomography data archive, 2017, arXiv: 1704.01178.
    [14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2$^{nd}$ edition, SIAM, Philadelphia, 2002.
    [15] N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM J. Appl. Math., 77 (2017), 2250-2271.  doi: 10.1137/17M1124292.
    [16] N. Hyvönen and L. Mustonen, Generalized linearization techniques in electrical impedance tomography, Numer. Math., 140 (2018), 95-120.  doi: 10.1007/s00211-018-0959-1.
    [17] N. HyvönenL. Päivärinta and J. Tamminen, Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Probl. Imaging, 12 (2017), 373-400.  doi: 10.3934/ipi.2018017.
    [18] A. LipponenSe ppänen A and J. P. Kaipio, Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition, J. Electron. Imaging, 22 (2013), 023008.  doi: 10.1117/1.JEI.22.2.023008.
    [19] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
    [20] J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation, Springer-Verlag, Berlin, 2002.
    [21] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [22] L. N. Trefethen, Numerical computation of the Schwarz–Christoffel transformation, SIAM J. Sci. Stat. Comput., 1 (1980), 82-102.  doi: 10.1137/0901004.
    [23] G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011.  doi: 10.1088/0266-5611/25/12/123011.
    [24] M. Vauhkonen, Electrical Impedance Tomography with Prior Information, Ph.D thesis, University of Kuopio, 1997.
    [25] F. Zernike, Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode, Physica, 1 (1934), 689-704.  doi: 10.1016/S0031-8914(34)80259-5.
  • 加载中
Open Access Under a Creative Commons license

Figures(9)

Tables(4)

SHARE

Article Metrics

HTML views(874) PDF downloads(280) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return