![]() |
This work implements and numerically tests the direct reconstruction algorithm introduced in [Garde & Hyvönen, SIAM J. Math. Anal., 56, 3588-3604, 2024] for two-dimensional linearized electrical impedance tomography. Although the algorithm was originally designed for a linearized setting, we numerically demonstrate its functionality when the input data is the corresponding change in the current-to-voltage boundary operator. Both idealized continuum model and practical complete electrode model measurements are considered in the numerical studies, with the examined domain being either the unit disk or a convex polygon. Special attention is paid to regularizing the algorithm and its connections to the singular value decomposition of a truncated linearized forward map, as well as to the explicit triangular structures originating from the properties of the employed Zernike polynomial basis for the conductivity.
Citation: |
Figure 4. The accepted Zernike indices for the reconstructions in Fig 3
Table 1.
The real parts of the first nine right singular functions of
![]() |
Table 2.
The imaginary parts of the first nine right singular functions of
![]() |
Table 3.
The real parts of the first seven right singular functions of
![]() |
Table 4.
The imaginary parts of the first seven right singular functions of
![]() |
[1] |
A. Allers and F. Santosa, Stability and resolution analysis of a linearized problem in electrical impedance tomography, Inverse Problems, 7 (1991), 515-533.
doi: 10.1088/0266-5611/7/4/003.![]() ![]() ![]() |
[2] |
L. Borcea, Electrical impedance tomography, Inverse problems, 18 (2002), R99-R136.
doi: 10.1088/0266-5611/18/6/201.![]() ![]() ![]() |
[3] |
A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73.
![]() |
[4] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.
doi: 10.1137/S0036144598333613.![]() ![]() ![]() |
[5] |
K.-S. Cheng, D. Isaacson, J. S. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924.
doi: 10.1109/10.35300.![]() ![]() |
[6] |
T. A. Driscoll, Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping, ACM Trans. Math. Soft., 22 (1996), 168-186.
doi: 10.1145/229473.229475.![]() ![]() |
[7] |
H. Garde, Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations, Inverse Probl. Sci. Eng., 26 (2018), 33-50.
doi: 10.1080/17415977.2017.1290088.![]() ![]() ![]() |
[8] |
H. Garde and N. Hyvönen, Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numer. Math., 147 (2021), 579-609.
doi: 10.1007/s00211-020-01170-8.![]() ![]() ![]() |
[9] |
H. Garde and N. Hyvönen, Series reversion in Calderón's problem, Math. Comp., 91 (2022), 1925-1953.
doi: 10.1090/mcom/3729.![]() ![]() ![]() |
[10] |
H. Garde and N. Hyvönen, Linearised Calderón problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations, SIAM J. Math. Anal., 56 (2024), 3588-3604.
doi: 10.1137/23M1609270.![]() ![]() ![]() |
[11] |
T. Gustafsson and G. D. McBain, scikit-fem: A Python package for finite element assembly, J. Open Source Softw., 5 (2020), 2369.
doi: 10.21105/joss.02369.![]() ![]() |
[12] |
B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518.
doi: 10.1137/090773970.![]() ![]() ![]() |
[13] |
A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2{D} electrical impedance tomography data archive, 2017, arXiv: 1704.01178.
![]() |
[14] |
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2$^{nd}$ edition, SIAM, Philadelphia, 2002.
![]() ![]() |
[15] |
N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM J. Appl. Math., 77 (2017), 2250-2271.
doi: 10.1137/17M1124292.![]() ![]() ![]() |
[16] |
N. Hyvönen and L. Mustonen, Generalized linearization techniques in electrical impedance tomography, Numer. Math., 140 (2018), 95-120.
doi: 10.1007/s00211-018-0959-1.![]() ![]() ![]() |
[17] |
N. Hyvönen, L. Päivärinta and J. Tamminen, Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Probl. Imaging, 12 (2017), 373-400.
doi: 10.3934/ipi.2018017.![]() ![]() ![]() |
[18] |
A. Lipponen, Se ppänen A and J. P. Kaipio, Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition, J. Electron. Imaging, 22 (2013), 023008.
doi: 10.1117/1.JEI.22.2.023008.![]() ![]() |
[19] |
Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
![]() ![]() |
[20] |
J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation, Springer-Verlag, Berlin, 2002.
![]() ![]() |
[21] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.
doi: 10.1137/0152060.![]() ![]() ![]() |
[22] |
L. N. Trefethen, Numerical computation of the Schwarz–Christoffel transformation, SIAM J. Sci. Stat. Comput., 1 (1980), 82-102.
doi: 10.1137/0901004.![]() ![]() ![]() |
[23] |
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011.
doi: 10.1088/0266-5611/25/12/123011.![]() ![]() ![]() |
[24] |
M. Vauhkonen, Electrical Impedance Tomography with Prior Information, Ph.D thesis, University of Kuopio, 1997.
![]() |
[25] |
F. Zernike, Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode, Physica, 1 (1934), 689-704.
doi: 10.1016/S0031-8914(34)80259-5.![]() ![]() |
The structure of
The radial components of certain right singular functions and the first hundred singular values of
Reconstructions of a discoidal inclusion inside the unit disk from highly accurate data generated using a Möbius transformation with
The accepted Zernike indices for the reconstructions in Fig 3
Reconstructions of a wave-like conductivity perturbation in the unit disk with
An SVD-based reconstruction of a smooth conductivity perturbation in a square for
An SVD-based reconstruction of a smooth conductivity perturbation in a polygon for
An SVD-based reconstruction of a smooth conductivity perturbation from simulated CEM data with 32 electrodes,
Three SVD-based reconstructions with