[1]
|
J.-F. Aujol, G. Gilboa and N. Papadakis, Theoretical analysis of flows estimating eigenfunctions of one-homogeneous functionals, SIAM J. Imaging Sci., 11 (2018), 1416-1440.
doi: 10.1137/17M1139126.
|
[2]
|
H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2017.
doi: 10.1007/978-3-319-48311-5.
|
[3]
|
M. Benning, G. Gilboa, J. S. Grah and C.-B. Schönlieb, Learning filter functions in regularisers by minimising quotients, International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), Kolding, Denmark, Springer, 6 (2017), 511-523.
doi: 10.1007/978-3-319-58771-4_41.
|
[4]
|
M. Benning, G. Gilboa and C.-B. Schönlieb, Learning parametrised regularisation functions via quotient minimisation, PAMM, 16 (2016), 933-936.
doi: 10.1002/pamm.201610451.
|
[5]
|
S. Boyd, N. Parikh and E. Chu, Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers, Now Publishers Inc, 2011.
doi: 10.1561/9781601984616.
|
[6]
|
X. Bresson, T. Laurent, D. Uminsky and J. V. Brecht, Convergence and energy landscape for Cheeger cut clustering, Adv. Neural Inf. Process. Syst., (2012), 1385-1393.
|
[7]
|
L. Bungert, E. Hait-Fraenkel, N. Papadakis and G. Gilboa, Nonlinear power method for computing eigenvectors of proximal operators and neural networks, SIAM J. Imaging Sci., 14 (2021), 1114-1148.
doi: 10.1137/20M1384154.
|
[8]
|
M. Burger, G. Gilboa, M. Moeller, L. Eckardt and D. Cremers, Spectral decompositions using one-homogeneous functionals, SIAM Journal on Imaging Sciences, 9 (2016), 1374-1408.
doi: 10.1137/15M1054687.
|
[9]
|
A. Cherni, E. Chouzenoux, L. Duval and J.-C. Pesquet, SPOQ $\ell_p $-over-$\ell_q $ regularization for sparse signal recovery applied to mass spectrometry, IEEE Trans. Signal Process., 68 (2020), 6070-6084.
doi: 10.1109/TSP.2020.3025731.
|
[10]
|
L. Demanet and P. Hand, Scaling law for recovering the sparsest element in a subspace, Information and Inference: A Journal of the IMA, 3 (2014), 295-309.
doi: 10.1093/imaiai/iau007.
|
[11]
|
T. Feld, J.-F. Aujol, G. Gilboa and N. Papadakis, Rayleigh quotient minimization for absolutely one-homogeneous functionals, Inverse Probl., 35 (2019), 064003.
doi: 10.1088/1361-6420/ab0cb2.
|
[12]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[13]
|
M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse pca, Adv. Neural Inf. Process. Syst., 23.
|
[14]
|
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
doi: 10.1017/CBO9781139020411.
|
[15]
|
P. O. Hoyer, Non-negative matrix factorization with sparseness constraints., J. Mach. Learn. Res., 5.
|
[16]
|
Y. Hu, D. Zhang, J. Ye, X. Li and X. He, Fast and accurate matrix completion via truncated nuclear norm regularization, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2012), 2117-2130.
doi: 10.1109/TPAMI.2012.271.
|
[17]
|
N. Hurley and S. Rickard, Comparing measures of sparsity, IEEE Trans. Inf. Theory, 55 (2009), 4723-4741.
doi: 10.1109/TIT.2009.2027527.
|
[18]
|
H. K. Klein and M. D. Myers, A set of principles for conducting and evaluating interpretive field studies in information systems, MIS Quarterly, 67-93.
doi: 10.2307/249410.
|
[19]
|
J. Lei, Q. Liu and X. Wang, Physics-informed multi-fidelity learning-driven imaging method for electrical capacitance tomography, Eng. Appl. Artif. Intell., 116 (2022), 105467.
doi: 10.1016/j.engappai.2022.105467.
|
[20]
|
Q. Li, L. Shen, N. Zhang and J. Zhou, A proximal algorithm with backtracked extrapolation for a class of structured fractional programming, Appl. Comput. Harmon. Anal., 56 (2022), 98-122.
doi: 10.1016/j.acha.2021.08.004.
|
[21]
|
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications, Springer, 331 (2006).
doi: 10.1007/3-540-31246-3.
|
[22]
|
R. Z. Nossek and G. Gilboa, Flows generating nonlinear eigenfunctions, J. Sci. Comput., 75 (2018), 859-888.
doi: 10.1007/s10915-017-0577-6.
|
[23]
|
T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim and I. S. Kweon, Partial sum minimization of singular values in robust PCA: Algorithm and applications, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2015), 744-758.
doi: 10.1109/TPAMI.2015.2465956.
|
[24]
|
T. Pham-Dinh and H. A. Le-Thi, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), 23-46.
doi: 10.1007/s10479-004-5022-1.
|
[25]
|
Y. Rahimi, C. Wang, H. Dong and Y. Lou, A scale-invariant approach for sparse signal recovery, SIAM J. Sci. Comput., 41 (2019), A3649-A3672.
doi: 10.1137/18M123147X.
|
[26]
|
M. Tao, Minimization of $L_1$ over $L_2$ for sparse signal recovery with convergence guarantee, SIAM J. Sci. Comput., 44 (2022), A770-A797.
doi: 10.1137/20M136801X.
|
[27]
|
C. Wang, M. Tao, C.-N. Chuah, J. Nagy and Y. Lou, Minimizing $L_1$ over $L_2$ norms on the gradient, Inverse Probl., 38 (2022), 065011.
doi: 10.1088/1361-6420/ac64fb.
|
[28]
|
C. Wang, M. Tao, J. G. Nagy and Y. Lou, Limited-angle CT reconstruction via the $L_1/L_2$ minimization, SIAM J. Imaging Sci., 14 (2021), 749-777.
|
[29]
|
C. Wang, M. Yan, Y. Rahimi and Y. Lou, Accelerated schemes for the $L_1/L_2 $ minimization, IEEE Trans. Signal Process., 68 (2020), 2660-2669.
|
[30]
|
J. Wang, A wonderful triangle in compressed sensing, Information Sciences, 611 (2022), 95-106.
|
[31]
|
T. Wu, Z. Mao, Z. Li, Y. Zeng and T. Zeng, Efficient color image segmentation via quaternion-based $l_1/l_2$ regularization, J. Sci. Comput., 93 (2022), 9.
doi: 10.1007/s10915-022-01970-0.
|
[32]
|
Y. Xu, A. Narayan, H. Tran and C. G. Webster, Analysis of the ratio of $\ell_1$ and $\ell_2$ norms in compressed sensing, Appl. Comput. Harmon. Anal., 55 (2021), 486-511.
doi: 10.1016/j.acha.2021.06.006.
|
[33]
|
Z. Yu, F. Noo, F. Dennerlein, A. Wunderlich, G. Lauritsch and J. Hornegger, Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom, Phys. Med. Biol., 57 (2012), N237.
doi: 10.1088/0031-9155/57/13/N237.
|
[34]
|
N. Zhang and Q. Li, First-order algorithms for a class of fractional optimization problems, SIAM J. Optim., 32 (2022), 100-129.
|