\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Subspace-based coupled tensor decomposition for hyperspectral blind fusion

  • *Corresponding author: Minru Bai

    *Corresponding author: Minru Bai 

The second author is supported by [Natural Science Foundations of China under Grant number 11971159, 12071399.].

Abstract / Introduction Full Text(HTML) Figure(6) / Table(4) Related Papers Cited by
  • Fusing hyperspectral images (HSIs) and multispectral images (MSIs) is a widely employed technique for obtaining high spatial resolution HSIs (HR-HSIs). Many Tucker decomposition-based methods have been proposed and achieved commendable performance. However, the spatial-spectral correlation of HSIs may not be fully leveraged. To address this issue, we initially divide the HR-HSI into a coefficient tensor and a dictionary by utilizing its spectral correlation. Then, the coefficient tensor is further decomposed into three factor tensors through triple decomposition, which not only fully explores the spatial structure of the image, but also reduces the dimensionality of the problem. Meanwhile, a triple rank dynamic update scheme is proposed for avoiding cumbersome parameter tuning processes. Additionally, the degradation operators can be updated as dictionaries within the framework of triple decomposition, rendering our approach applicable in blind fusion scenarios. Furthermore, nonlocal self-similarity is utilized to cluster similar cubes together, reinforcing the low-rank prior of the data, then we minimize tensor average rank by developing an equivalent surrogate function with a difference of convex (DC) structure. An effective Gauss-Seidel difference of convex algorithm (GS-DCA) is presented to solve the proposed model. Finally, we provide a detailed convergence analysis of each algorithm based on Kurdyka-Lojasiewicz (KL) property. Extensive numerical experiments on hyperspectral datasets verify the effectiveness of our method.

    Mathematics Subject Classification: Primary: 94A08; Secondary: 68U10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Low-rank triple decomposition

    Figure 2.  (a) The relevance matrix of spectral bands of Pavia University in SNRh = 10dB. (b) The relation between $ r $ and PSNR under various noise levels in Indian Pines

    Figure 3.  The reconstructed images and corresponding error maps of TriDNLR and Hysure in fully blind cases. Left: Pavia University (bands 20, 40 and 60). Right: Indian Pines (bands 30, 60 and 90). (a) Hysure. (b) TriDNLR. (c) Ground truth

    Figure 4.  The first row shows the reconstructed images of the compared methods for Peppers at 5th, 10th, 15th bands in SNRh = 10dB and SNRm = 15dB, and the second row are corresponding error images of these methods. (a) STEREO. (b) SCOTT. (c)TriD. (d) TriDLR. (e) TriDNLR. (f) Ground truth

    Figure 5.  The reconstructed images and error maps of the compared methods. (a) Hysure. (b) CSTF. (c) LTTR. (d) LTMR. (e) IRTenSR. (f) TriDNLR. (G) Ground truth

    Figure 6.  The PSNR of different bands of the reconstructed HSIs obtained by compared methods. Left: Pavia University in the case of SNRh = 10dB and SNRm = 15dB. Right: Indian Pines in the case of SNRh = 15dB and SNRm = 20dB

    Table 1.  The evaluation metrics of the compared methods (Nonblind)

    Method PSNR SSIM ERGAS SAM RMSE TIMES
    Pavia University
    SCOTT 30.07 0.76 4.57 7.57 8.23 0.70s
    TriD 30.30 0.78 3.76 7.11 8.04 0.65s
    TriDLR 30.99 0.80 2.01 6.47 7.46 3.58s
    TriDNLR 31.86 0.85 1.84 5.58 6.76 5.61s
    Peppers
    SCOTT 33.91 0.79 2.03 29.67 5.46 2.47s
    TriD 35.48 0.85 1.69 25.40 4.72 1.24s
    TriDLR 36.09 0.88 1.54 23.26 4.41 5.51s
    TriDNLR 36.73 0.91 1.34 22.06 4.17 6.42s
     | Show Table
    DownLoad: CSV

    Table 2.  The experimental results of TriDNLR and Hysure (Blind)

    Dataset PSNR SSIM ERGAS SAM RMSE PSNR SSIM ERGAS SAM RMSE
    TriDNLR Hysure
    Pavia U 26.81 0.78 3.33 9.37 13.82 25.67 0.61 4.06 14.45 17.67
    Indian 25.27 0.73 3.83 6.02 14.62 24.52 0.60 3.99 5.97 16.45
    Peppers 31.95 0.86 2.65 26.27 7.70 30.69 0.72 2.55 21.48 8.90
     | Show Table
    DownLoad: CSV

    Table 3.  The experimental results on Pavia University in different noise levels (dB) for five compareds method (Semiblind: only the spectral degradation operator is known)

    Noise level Dataset Evaluation STEREO SCOTT TriD-Blind TriDLR TriDNLR
    SNRh=2 Pavia U PSNR$ \uparrow $ 23.52 23.74 24.28 24.79 26.78
    SNRm=5 SSIM$ \uparrow $ 0.47 0.48 0.48 0.49 0.64
    ERGAS $ \downarrow $ 4.79 2.33 4.39 4.18 3.28
    SAM $ \downarrow $ 13.43 13.88 11.36 11.97 8.14
    RMSE $ \downarrow $ 17.53 17.14 16.22 15.27 12.09
    Peppers PSNR$ \uparrow $ 30.10 27.74 30.78 31.36 32.79
    SSIM$ \uparrow $ 0.74 0.73 0.74 0.76 0.81
    ERGAS $ \downarrow $ 3.46 4.65 2.85 2.72 2.27
    SAM $ \downarrow $ 30.17 29.23 28.77 28.82 27.58
    RMSE $ \downarrow $ 8.48 10.83 7.67 7.61 6.20
    SNRh=10 Pavia U PSNR$ \uparrow $ 27.14 29.00 30.05 30.75 31.55
    SNRm=15 SSIM$ \uparrow $ 0.69 0.76 0.77 0.80 0.84
    ERGAS $ \downarrow $ 3.17 1.28 2.27 2.10 1.90
    SAM $ \downarrow $ 9.76 8.73 7.22 6.20 5.41
    RMSE $ \downarrow $ 11.56 9.23 8.39 7.65 6.97
    Peppers PSNR$ \uparrow $ 33.88 33.04 34.31 34.69 35.44
    SSIM$ \uparrow $ 0.85 0.78 0.85 0.88 0.90
    ERGAS $ \downarrow $ 2.12 2.20 1.89 1.83 1.65
    SAM $ \downarrow $ 21.46 27.58 25.19 23.13 22.87
    RMSE $ \downarrow $ 5.41 5.46 5.29 5.27 4.72
    SNRh=15 Pavia U PSNR $ \uparrow $ 28.92 32.52 32.95 33.31 34.01
    SNRm=20 SSIM $ \uparrow $ 0.77 0.85 0.86 0.88 0.90
    ERGAS $ \downarrow $ 2.59 0.87 1.64 1.56 1.44
    SAM $ \downarrow $ 8.42 6.29 5.46 4.88 4.49
    RMSE $ \downarrow $ 9.39 6.26 5.98 5.73 5.34
    Peppers PSNR$ \uparrow $ 35.08 35.92 35.67 36.73 37.36
    SSIM$ \uparrow $ 0.88 0.86 0.87 0.92 0.93
    ERGAS $ \downarrow $ 1.73 1.72 1.60 1.39 1.32
    SAM $ \downarrow $ 20.75 25.32 25.06 21.60 22.38
    RMSE $ \downarrow $ 4.67 4.43 4.63 4.27 3.98
     | Show Table
    DownLoad: CSV

    Table 4.  Evaluation metrics of different methods on three HSI datasets (Nonblind)

    Noise level Dataset Evaluation Hysure CSTF LTTR LTMR IRTenSR TriDNLR
    SNRh=2 Pavia U PSNR $ \uparrow $ 25.12 25.35 20.73 25.42 24.57 26.88
    SNRm=5 SSIM $ \uparrow $ 0.63 0.58 0.44 0.54 0.59 0.65
    ERGAS $ \downarrow $ 4.06 3.92 6.82 3.97 4.36 3.26
    SAM $ \downarrow $ 9.52 10.04 23.79 11.64 9.51 8.06
    RMSE $ \downarrow $ 14.40 14.14 23.54 13.85 15.22 11.92
    Indian PSNR $ \uparrow $ 22.84 23.13 14.31 22.18 22.99 24.03
    SSIM $ \uparrow $ 0.57 0.52 0.13 0.50 0.52 0.59
    ERGAS $ \downarrow $ 5.08 4.85 13.39 5.50 5.14 4.42
    SAM $ \downarrow $ 8.32 7.74 23.68 9.49 7.97 7.03
    RMSE $ \downarrow $ 19.13 18.37 49.21 20.40 18.97 16.87
    SNRh=10 Pavia U PSNR $ \uparrow $ 28.43 30.14 27.78 30.65 29.97 31.86
    SNRm=15 SSIM $ \uparrow $ 0.80 0.78 0.77 0.80 0.81 0.85
    ERGAS $ \downarrow $ 2.79 2.12 3.07 2.11 2.34 1.84
    SAM $ \downarrow $ 6.59 6.74 10.12 7.09 6.82 5.52
    RMSE $ \downarrow $ 9.81 8.61 10.82 7.33 8.20 6.76
    Indian PSNR $ \uparrow $ 26.01 25.85 24.95 26.26 25.04 27.39
    SSIM $ \uparrow $ 0.70 0.71 0.66 0.72 0.66 0.75
    ERGAS $ \downarrow $ 3.46 3.81 4.02 3.40 4.07 3.08
    SAM $ \downarrow $ 5.78 5.91 6.83 6.03 6.41 5.36
    RMSE $ \downarrow $ 13.57 14.44 15.10 12.92 14.98 11.88
    SNRh=15 Pavia U PSNR $ \uparrow $ 32.14 33.06 30.01 33.42 33.54 34.69
    SNRm=20 SSIM $ \uparrow $ 0.89 0.87 0.78 0.87 0.91 0.92
    ERGAS $ \downarrow $ 1.83 1.58 4.79 1.65 1.59 1.34
    SAM $ \downarrow $ 5.65 5.56 9.40 5.50 4.66 4.40
    RMSE $ \downarrow $ 6.56 5.71 8.08 5.47 5.60 4.86
    Indian PSNR $ \uparrow $ 28.15 27.64 27.09 28.02 27.89 29.27
    SSIM $ \uparrow $ 0.79 0.76 0.75 0.80 0.78 0.82
    ERGAS $ \downarrow $ 2.75 3.00 3.15 2.76 2.99 2.59
    SAM $ \downarrow $ 4.99 5.34 5.39 5.10 4.58 4.78
    RMSE $ \downarrow $ 10.78 11.16 11.97 10.96 11.28 10.10
     | Show Table
    DownLoad: CSV
  • [1] B. AiazziL. AlparoneS. BarontiA. Garzelli and M. Selva, MTF-tailored multiscale fusion of high-resolution MS and Pan imagery, Photogramm. Eng. Remote Sens., 72 (2006), 591-596.  doi: 10.14358/PERS.72.5.591.
    [2] B. AiazziS. Baronti and M. Selva, Improving component substitution pansharpening through multivariate regression of MS pan data, IEEE Trans. Geosci. Remote Sens., 45 (2007), 3230-3239.  doi: 10.1109/TGRS.2007.901007.
    [3] H. AttouchJ. BolteP. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), 438-457.  doi: 10.1287/moor.1100.0449.
    [4] H. AttouchJ. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods, Math. Program., 137 (2013), 91-129.  doi: 10.1007/s10107-011-0484-9.
    [5] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer Berlin Heidelberg, 1998.
    [6] J. BolteS. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459-494.  doi: 10.1007/s10107-013-0701-9.
    [7] R. A. BorsoiC. PrevostK. UsevichD. BrieJ. C. M. Bermudez and C. Richard, Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability, IEEE J. Sel.Topics Signal Process., 15 (2021), 702-717.  doi: 10.1109/JSTSP.2021.3054338.
    [8] K. Cawse-NicholsonS. B. DamelinA. Robin and M. Sears, Determining the intrinsic dimension of a hyperspectral image using random matrix theory, IEEE Trans. Image Process., 22 (2013), 1301-1310.  doi: 10.1109/TIP.2012.2227765.
    [9] C. ChenY. LiW. Liu and J. Huang, SIRF: Simultaneous satellite image registration and fusion in a unified framework, IEEE Trans. Image Process., 24 (2015), 4213-4224.  doi: 10.1109/TIP.2015.2456415.
    [10] Y. ChenJ. ZengW. HeX. Zhao and T. Huang, Hyperspectral and multispectral image fusion using factor smoothed tensor ring decomposition, IEEE Trans. Geosci. Remote Sens., 60 (2022), 1-17.  doi: 10.1109/TGRS.2021.3114197.
    [11] Y. Chen, X. Zhang, L. Qi and Y. Xu, A Barzilai–Borwein gradient algorithm for Spatio-Temporal internet traffic data completion via tensor triple decomposition, J. Sci. Comput., 88 (2021), Paper No. 65, 24 pp. doi: 10.1007/s10915-021-01574-0.
    [12] X. Cui and J. Chang, Hyperspectral super-resolution via low rank tensor triple decomposition, J. Indust. Manag. Opt., 20 (2024), 942-966. 
    [13] K. DabovA. FoiV. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.  doi: 10.1109/TIP.2007.901238.
    [14] F. Dell'AcquaP. GambaA. FerrariJ. A. PalmasonJ. A. Benediktsson and K. Arnason, Exploiting spectral and spatial information in hyperspectral urban data with high resolution, IEEE Geosci. Remote Sens. Lett., 1 (2004), 322-326.  doi: 10.1109/LGRS.2004.837009.
    [15] R. Dian and S. Li, Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization, IEEE Trans. Image Process., 28 (2019), 5135-5146.  doi: 10.1109/TIP.2019.2916734.
    [16] R. DianS. Li and L. Fang, Learning a low tensor-train rank representation for hyperspectral image super-resolution, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 2672-2683.  doi: 10.1109/TNNLS.2018.2885616.
    [17] R. DianS. Li and X. Kang, Regularizing hyperspectral and multispectral image fusion by CNN denoiser, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1124-1135.  doi: 10.1109/TNNLS.2020.2980398.
    [18] S. Friedland and L.-H. Lim, Nuclear norm of higher-order tensors, Math. Comput., 87 (2018), 1255-1281.  doi: 10.1090/mcom/3239.
    [19] R. O. GreenM. L. EastwoodC. M. SartureT. G. ChrienM. AronssonB. J. ChippendaleJ. A. FaustB. E. PavriC. J. ChoviM. SolisM. R. Olah and O. Williams, Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sens. Envir., 65 (1998), 227-248.  doi: 10.1016/S0034-4257(98)00064-9.
    [20] W. GuoW. WanJ. Liu and H. Huang, Non-local blind hyperspectral image super-resolution via 4D sparse tensor factorization and low-rank, Inverse Problems and Imaging, 14 (2020), 339-361.  doi: 10.3934/ipi.2020015.
    [21] X. HeJ. WuQ. LingZ. LiZ. Lin and S. Zhou, Anomaly detection for hyperspectral imagery via tensor low-rank approximation with multiple subspace learning, IEEE Trans. Geosci. Remote Sens, 61 (2023), 1-17.  doi: 10.1109/TGRS.2023.3270667.
    [22] C. I. KanatsoulisX. FuN. D. Sidiropoulos and W.-K. Ma, Hyperspectral super-resolution: A coupled tensor factorization approach, IEEE Trans. Signal Process., 66 (2018), 6503-6517.  doi: 10.1109/TSP.2018.2876362.
    [23] M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra Appli., 435 (2011), 641-658.  doi: 10.1016/j.laa.2010.09.020.
    [24] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500.  doi: 10.1137/07070111X.
    [25] C. Lanaras, E. Baltsavias and K. Schindler, Hyperspectral super-resolution by coupled spectral unmixing, 2015 IEEE Int. Conf.Comput. Vis. (ICCV), 3586-3594.
    [26] S. LiR. DianL. Fang and J. M. Bioucas-Dias, Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Trans. Image Process., 27 (2018), 4118-4130.  doi: 10.1109/TIP.2018.2836307.
    [27] X. LiY. Yuan and Q. Wang, Hyperspectral and multispectral image fusion via nonlocal low-rank tensor approximation and sparse representation, IEEE Trans. Geosci. Remote Sens., 59 (2021), 550-562.  doi: 10.1109/TGRS.2020.2994968.
    [28] C. LuJ. FengY. ChenW. LiuZ. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 925-938.  doi: 10.1109/TPAMI.2019.2891760.
    [29] M. LvW. LiT. ChenJ. Zhou and R. Tao, Discriminant tensor-based manifold embedding for medical hyperspectral imagery, IEEE J. Biomed. Health Informat., 25 (2021), 3517-3528.  doi: 10.1109/JBHI.2021.3065050.
    [30] F. A. MianjiY. ZhangH. K. SulehriaA. Babakhani and M. R. Kardan, Super-resolution challenges in hyperspectral imagery, Inf. Technol. J., 7 (2008), 1030-1036.  doi: 10.3923/itj.2008.1030.1036.
    [31] C. PrevostK. UsevichP. Comon and D. Brie, Hyperspectral super-resolution with coupled Tucker approximation: Recoverability and SVD-based algorithms, IEEE Trans. Signal Process., 68 (2020), 931-946.  doi: 10.1109/TSP.2020.2965305.
    [32] L. QiY. ChenM. Bakshi and X. Zhang, Triple decomposition and tensor recovery of third order tensors, SIAM J. Matrix Anal. Appl., 42 (2021), 299-329.  doi: 10.1137/20M1323266.
    [33] Y. Rivenson and A. Stern, Compressed imaging with a separable sensing operator, IEEE Signal Process. Letters, 16 (2009), 449-452.  doi: 10.1109/LSP.2009.2017817.
    [34] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer Berlin Heidelberg, 1998.
    [35] M. SimõesJ. Bioucas-DiasL. B. Almeida and J. Chanussot, A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Trans. Geosci. Remote Sens., 53 (2015), 3373-3388.  doi: 10.1109/TGRS.2014.2375320.
    [36] H. SuH. ZhangZ. Wu and Q. Du, Relaxed collaborative representation with low-rank and sparse matrix decomposition for hyperspectral anomaly detection, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 15 (2022), 6826-6842.  doi: 10.1109/JSTARS.2022.3193315.
    [37] K. WangY. WangX. ZhaoJ. C. ChanZ. Xu and D. Meng, Hyperspectral and multispectral image fusion via nonlocal low-rank tensor decomposition and spectral unmixing, IEEE Trans. Geosci. Remote Sens., 58 (2020), 7654-7671.  doi: 10.1109/TGRS.2020.2983063.
    [38] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
    [39] Q. WeiJ. Bioucas-DiasN. Dobigeon and J.-Y. Tourneret, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Trans. Geosci. Remote Sens., 53 (2015), 3658-3668.  doi: 10.1109/TGRS.2014.2381272.
    [40] Q. WeiN. Dobigeon and J.-Y. Tourneret, Fast fusion of multi-band images based on solving a Sylvester equation, IEEE Trans. Image Process., 24 (2015), 4109-4121.  doi: 10.1109/TIP.2015.2458572.
    [41] Q. XieM. ZhouQ. ZhaoZ. Xu and D. Meng, MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 1457-1473.  doi: 10.1109/TPAMI.2020.3015691.
    [42] Z. XieJ. HuX. KangP. Duan and S. Li, Multilayer global spectral–spatial attention network for wetland hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 60 (2022), 1-13.  doi: 10.1109/TGRS.2021.3133454.
    [43] H. XuM. QinS. ChenY. Zheng and J. Zheng, Hyperspectral-multispectral image fusion via tensor ring and subspace decompositions, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 14 (2021), 8823-8837.  doi: 10.1109/JSTARS.2021.3108233.
    [44] T. XuT.-Z. HuangL.-J. Deng and N. Yokoya, An iterative regularization method based on tensor subspace representation for hyperspectral image super-resolution, IEEE Trans. Geosci. Remote Sens., 60 (2022), 1-16.  doi: 10.1109/TGRS.2022.3176266.
    [45] T. XuT.-Z. HuangL.-J. DengX.-L. Zhao and J Huang, Hyperspectral image superresolution using unidirectional total variation with Tucker decomposition, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 13 (2020), 4381-4398.  doi: 10.1109/JSTARS.2020.3012566.
    [46] Y. XuZ. WuJ. ChanussotP. Comon and Z. Wei, Nonlocal coupled tensor CP Decomposition for hyperspectral and multispectral image fusion, IEEE Trans. Geosci. Remote Sens., 58 (2020), 348-362.  doi: 10.1109/TGRS.2019.2936486.
    [47] Y. XuZ. WuJ. Chanussot and Z. Wei, Nonlocal patch tensor sparse representation for hyperspectral image super-resolution, IEEE Trans. Image Process., 28 (2019), 3034-3047.  doi: 10.1109/TIP.2019.2893530.
    [48] J. YangT. LinX. Chen and L. Xiao, Multiple deep proximal learning for hyperspectral-multispectral image fusion, IEEE Trans. Geosci. Remote Sens., 61 (2023), 1-14.  doi: 10.1109/TGRS.2023.3319069.
    [49] L. YangT. Pong and X. Chen, Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction, SIAM J. Imaging Sci., 20 (2017), 74-110.  doi: 10.1137/15M1027528.
    [50] N. YokoyaT. Yairi and A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Trans. Geosci. Remote Sens., 50 (2012), 528-537.  doi: 10.1109/TGRS.2011.2161320.
    [51] C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Statist., 38 (2010), 894-942.  doi: 10.1214/09-AOS729.
    [52] M. ZhangY. YangG. NiT. Wu and T. Zeng, Self-supervised multi-scale neural network for blind deblurring, Inverse Problems and Imaging, 18 (2024), 623-641.  doi: 10.3934/ipi.2023046.
    [53] Y. ZhangX. RenB. A. CliffordQ. Wang and X. Zhang, Image fusion network for dual-modal restoration, Inverse Problems and Imaging, 15 (2021), 1409-1419.  doi: 10.3934/ipi.2021067.
    [54] X. Zhao, M. Bai and M. K. Ng, Nonconvex optimization for robust tensor completion from grossly sparse observations, J. Sci. Comput., 85 (2020), Paper No. 46, 32 pp. doi: 10.1007/s10915-020-01356-0.
    [55] X. ZhaoM. BaiD. Sun and L. Zheng, Robust tensor completion: Equivalent surrogates, error bounds, and algorithms, SIAM J. Imaging Sci., 15 (2022), 625-669.  doi: 10.1137/21M1429539.
  • 加载中

Figures(6)

Tables(4)

SHARE

Article Metrics

HTML views(1382) PDF downloads(285) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return