[1]
|
B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli and M. Selva, MTF-tailored multiscale fusion of high-resolution MS and Pan imagery, Photogramm. Eng. Remote Sens., 72 (2006), 591-596.
doi: 10.14358/PERS.72.5.591.
|
[2]
|
B. Aiazzi, S. Baronti and M. Selva, Improving component substitution pansharpening through multivariate regression of MS pan data, IEEE Trans. Geosci. Remote Sens., 45 (2007), 3230-3239.
doi: 10.1109/TGRS.2007.901007.
|
[3]
|
H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), 438-457.
doi: 10.1287/moor.1100.0449.
|
[4]
|
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods, Math. Program., 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.
|
[5]
|
J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer Berlin Heidelberg, 1998.
|
[6]
|
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), 459-494.
doi: 10.1007/s10107-013-0701-9.
|
[7]
|
R. A. Borsoi, C. Prevost, K. Usevich, D. Brie, J. C. M. Bermudez and C. Richard, Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability, IEEE J. Sel.Topics Signal Process., 15 (2021), 702-717.
doi: 10.1109/JSTSP.2021.3054338.
|
[8]
|
K. Cawse-Nicholson, S. B. Damelin, A. Robin and M. Sears, Determining the intrinsic dimension of a hyperspectral image using random matrix theory, IEEE Trans. Image Process., 22 (2013), 1301-1310.
doi: 10.1109/TIP.2012.2227765.
|
[9]
|
C. Chen, Y. Li, W. Liu and J. Huang, SIRF: Simultaneous satellite image registration and fusion in a unified framework, IEEE Trans. Image Process., 24 (2015), 4213-4224.
doi: 10.1109/TIP.2015.2456415.
|
[10]
|
Y. Chen, J. Zeng, W. He, X. Zhao and T. Huang, Hyperspectral and multispectral image fusion using factor smoothed tensor ring decomposition, IEEE Trans. Geosci. Remote Sens., 60 (2022), 1-17.
doi: 10.1109/TGRS.2021.3114197.
|
[11]
|
Y. Chen, X. Zhang, L. Qi and Y. Xu, A Barzilai–Borwein gradient algorithm for Spatio-Temporal internet traffic data completion via tensor triple decomposition, J. Sci. Comput., 88 (2021), Paper No. 65, 24 pp.
doi: 10.1007/s10915-021-01574-0.
|
[12]
|
X. Cui and J. Chang, Hyperspectral super-resolution via low rank tensor triple decomposition, J. Indust. Manag. Opt., 20 (2024), 942-966.
|
[13]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[14]
|
F. Dell'Acqua, P. Gamba, A. Ferrari, J. A. Palmason, J. A. Benediktsson and K. Arnason, Exploiting spectral and spatial information in hyperspectral urban data with high resolution, IEEE Geosci. Remote Sens. Lett., 1 (2004), 322-326.
doi: 10.1109/LGRS.2004.837009.
|
[15]
|
R. Dian and S. Li, Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization, IEEE Trans. Image Process., 28 (2019), 5135-5146.
doi: 10.1109/TIP.2019.2916734.
|
[16]
|
R. Dian, S. Li and L. Fang, Learning a low tensor-train rank representation for hyperspectral image super-resolution, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 2672-2683.
doi: 10.1109/TNNLS.2018.2885616.
|
[17]
|
R. Dian, S. Li and X. Kang, Regularizing hyperspectral and multispectral image fusion by CNN denoiser, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1124-1135.
doi: 10.1109/TNNLS.2020.2980398.
|
[18]
|
S. Friedland and L.-H. Lim, Nuclear norm of higher-order tensors, Math. Comput., 87 (2018), 1255-1281.
doi: 10.1090/mcom/3239.
|
[19]
|
R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovi, M. Solis, M. R. Olah and O. Williams, Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sens. Envir., 65 (1998), 227-248.
doi: 10.1016/S0034-4257(98)00064-9.
|
[20]
|
W. Guo, W. Wan, J. Liu and H. Huang, Non-local blind hyperspectral image super-resolution via 4D sparse tensor factorization and low-rank, Inverse Problems and Imaging, 14 (2020), 339-361.
doi: 10.3934/ipi.2020015.
|
[21]
|
X. He, J. Wu, Q. Ling, Z. Li, Z. Lin and S. Zhou, Anomaly detection for hyperspectral imagery via tensor low-rank approximation with multiple subspace learning, IEEE Trans. Geosci. Remote Sens, 61 (2023), 1-17.
doi: 10.1109/TGRS.2023.3270667.
|
[22]
|
C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos and W.-K. Ma, Hyperspectral super-resolution: A coupled tensor factorization approach, IEEE Trans. Signal Process., 66 (2018), 6503-6517.
doi: 10.1109/TSP.2018.2876362.
|
[23]
|
M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra Appli., 435 (2011), 641-658.
doi: 10.1016/j.laa.2010.09.020.
|
[24]
|
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500.
doi: 10.1137/07070111X.
|
[25]
|
C. Lanaras, E. Baltsavias and K. Schindler, Hyperspectral super-resolution by coupled spectral unmixing, 2015 IEEE Int. Conf.Comput. Vis. (ICCV), 3586-3594.
|
[26]
|
S. Li, R. Dian, L. Fang and J. M. Bioucas-Dias, Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Trans. Image Process., 27 (2018), 4118-4130.
doi: 10.1109/TIP.2018.2836307.
|
[27]
|
X. Li, Y. Yuan and Q. Wang, Hyperspectral and multispectral image fusion via nonlocal low-rank tensor approximation and sparse representation, IEEE Trans. Geosci. Remote Sens., 59 (2021), 550-562.
doi: 10.1109/TGRS.2020.2994968.
|
[28]
|
C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 925-938.
doi: 10.1109/TPAMI.2019.2891760.
|
[29]
|
M. Lv, W. Li, T. Chen, J. Zhou and R. Tao, Discriminant tensor-based manifold embedding for medical hyperspectral imagery, IEEE J. Biomed. Health Informat., 25 (2021), 3517-3528.
doi: 10.1109/JBHI.2021.3065050.
|
[30]
|
F. A. Mianji, Y. Zhang, H. K. Sulehria, A. Babakhani and M. R. Kardan, Super-resolution challenges in hyperspectral imagery, Inf. Technol. J., 7 (2008), 1030-1036.
doi: 10.3923/itj.2008.1030.1036.
|
[31]
|
C. Prevost, K. Usevich, P. Comon and D. Brie, Hyperspectral super-resolution with coupled Tucker approximation: Recoverability and SVD-based algorithms, IEEE Trans. Signal Process., 68 (2020), 931-946.
doi: 10.1109/TSP.2020.2965305.
|
[32]
|
L. Qi, Y. Chen, M. Bakshi and X. Zhang, Triple decomposition and tensor recovery of third order tensors, SIAM J. Matrix Anal. Appl., 42 (2021), 299-329.
doi: 10.1137/20M1323266.
|
[33]
|
Y. Rivenson and A. Stern, Compressed imaging with a separable sensing operator, IEEE Signal Process. Letters, 16 (2009), 449-452.
doi: 10.1109/LSP.2009.2017817.
|
[34]
|
R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer Berlin Heidelberg, 1998.
|
[35]
|
M. Simões, J. Bioucas-Dias, L. B. Almeida and J. Chanussot, A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Trans. Geosci. Remote Sens., 53 (2015), 3373-3388.
doi: 10.1109/TGRS.2014.2375320.
|
[36]
|
H. Su, H. Zhang, Z. Wu and Q. Du, Relaxed collaborative representation with low-rank and sparse matrix decomposition for hyperspectral anomaly detection, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 15 (2022), 6826-6842.
doi: 10.1109/JSTARS.2022.3193315.
|
[37]
|
K. Wang, Y. Wang, X. Zhao, J. C. Chan, Z. Xu and D. Meng, Hyperspectral and multispectral image fusion via nonlocal low-rank tensor decomposition and spectral unmixing, IEEE Trans. Geosci. Remote Sens., 58 (2020), 7654-7671.
doi: 10.1109/TGRS.2020.2983063.
|
[38]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[39]
|
Q. Wei, J. Bioucas-Dias, N. Dobigeon and J.-Y. Tourneret, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Trans. Geosci. Remote Sens., 53 (2015), 3658-3668.
doi: 10.1109/TGRS.2014.2381272.
|
[40]
|
Q. Wei, N. Dobigeon and J.-Y. Tourneret, Fast fusion of multi-band images based on solving a Sylvester equation, IEEE Trans. Image Process., 24 (2015), 4109-4121.
doi: 10.1109/TIP.2015.2458572.
|
[41]
|
Q. Xie, M. Zhou, Q. Zhao, Z. Xu and D. Meng, MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 1457-1473.
doi: 10.1109/TPAMI.2020.3015691.
|
[42]
|
Z. Xie, J. Hu, X. Kang, P. Duan and S. Li, Multilayer global spectral–spatial attention network for wetland hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 60 (2022), 1-13.
doi: 10.1109/TGRS.2021.3133454.
|
[43]
|
H. Xu, M. Qin, S. Chen, Y. Zheng and J. Zheng, Hyperspectral-multispectral image fusion via tensor ring and subspace decompositions, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 14 (2021), 8823-8837.
doi: 10.1109/JSTARS.2021.3108233.
|
[44]
|
T. Xu, T.-Z. Huang, L.-J. Deng and N. Yokoya, An iterative regularization method based on tensor subspace representation for hyperspectral image super-resolution, IEEE Trans. Geosci. Remote Sens., 60 (2022), 1-16.
doi: 10.1109/TGRS.2022.3176266.
|
[45]
|
T. Xu, T.-Z. Huang, L.-J. Deng, X.-L. Zhao and J Huang, Hyperspectral image superresolution using unidirectional total variation with Tucker decomposition, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 13 (2020), 4381-4398.
doi: 10.1109/JSTARS.2020.3012566.
|
[46]
|
Y. Xu, Z. Wu, J. Chanussot, P. Comon and Z. Wei, Nonlocal coupled tensor CP Decomposition for hyperspectral and multispectral image fusion, IEEE Trans. Geosci. Remote Sens., 58 (2020), 348-362.
doi: 10.1109/TGRS.2019.2936486.
|
[47]
|
Y. Xu, Z. Wu, J. Chanussot and Z. Wei, Nonlocal patch tensor sparse representation for hyperspectral image super-resolution, IEEE Trans. Image Process., 28 (2019), 3034-3047.
doi: 10.1109/TIP.2019.2893530.
|
[48]
|
J. Yang, T. Lin, X. Chen and L. Xiao, Multiple deep proximal learning for hyperspectral-multispectral image fusion, IEEE Trans. Geosci. Remote Sens., 61 (2023), 1-14.
doi: 10.1109/TGRS.2023.3319069.
|
[49]
|
L. Yang, T. Pong and X. Chen, Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction, SIAM J. Imaging Sci., 20 (2017), 74-110.
doi: 10.1137/15M1027528.
|
[50]
|
N. Yokoya, T. Yairi and A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Trans. Geosci. Remote Sens., 50 (2012), 528-537.
doi: 10.1109/TGRS.2011.2161320.
|
[51]
|
C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Statist., 38 (2010), 894-942.
doi: 10.1214/09-AOS729.
|
[52]
|
M. Zhang, Y. Yang, G. Ni, T. Wu and T. Zeng, Self-supervised multi-scale neural network for blind deblurring, Inverse Problems and Imaging, 18 (2024), 623-641.
doi: 10.3934/ipi.2023046.
|
[53]
|
Y. Zhang, X. Ren, B. A. Clifford, Q. Wang and X. Zhang, Image fusion network for dual-modal restoration, Inverse Problems and Imaging, 15 (2021), 1409-1419.
doi: 10.3934/ipi.2021067.
|
[54]
|
X. Zhao, M. Bai and M. K. Ng, Nonconvex optimization for robust tensor completion from grossly sparse observations, J. Sci. Comput., 85 (2020), Paper No. 46, 32 pp.
doi: 10.1007/s10915-020-01356-0.
|
[55]
|
X. Zhao, M. Bai, D. Sun and L. Zheng, Robust tensor completion: Equivalent surrogates, error bounds, and algorithms, SIAM J. Imaging Sci., 15 (2022), 625-669.
doi: 10.1137/21M1429539.
|