[1]
|
C. Aguerrebere, A. Almansa, J. Delon, Y. Gousseau and P. Muse, A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, With an Application to HDR Imaging, IEEE Transactions on Computational Imaging, 3 (2017), 633-646.
doi: 10.1109/TCI.2017.2704439.
|
[2]
|
J. M. Bardsley and C. Fox., An MCMC method for uncertainty quantification in nonnegativity constrained inverse problems, Inverse Problems in Science and Engineering, 20 (2012), 477–498.
doi: 10.1080/17415977.2011.637208.
|
[3]
|
J. M. Bardsley, Computational Uncertainty Quantification for Inverse Problems: An Introduction to Singular Integrals, Comput. Sci. Eng., 19 Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018.
doi: 10.1137/1.9781611975383.
|
[4]
|
J. M. Bardsley and P. C. Hansen, MCMC algorithms for computational UQ of nonnegativity constrained linear inverse problems, SIAM Journal on Scientific Computing, 42 (2020), A1269-A1288.
doi: 10.1137/18M1234588.
|
[5]
|
J. M. Bardsley, A. Solonen, H. Haario and M. Laine, Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems, SIAM Journal on Scientific Computing, 36 (2014), A1895-A1910.
doi: 10.1137/140964023.
|
[6]
|
H. H Bauschke, P. L. Combettes, H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Second edition, With a foreword by Hédy Attouch CMS Books Math./Ouvrages Math. SMC Springer, Cham, 2017.
doi: 10.1007/978-3-319-48311-5.
|
[7]
|
A. Blake, P. Kohli and C. Rother, Markov Random Fields for Vision and Image Processing, MIT Press, Cambridge, MA, 2011.
|
[8]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
[9]
|
Z. Cai, J. Tang, S. Mukherjee, J. Li, C. B. Schönlieb and X. Zhang, NF-ULA: Langevin Monte carlo with normalizing flow prior for imaging inverse problems, SIAM J. Imaging Sci., 17 (2024), 820–860.
doi: 10.1137/23M1581807.
|
[10]
|
A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011321.19549.88.
|
[11]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[12]
|
T. Chen, E. Fox and C. Guestrin, Stochastic gradient Hamiltonian Monte Carlo, Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research, (2014), 1683-1691.
|
[13]
|
V. De Bortoli, A. Durmus, M. Pereyra and A. F. Vidal, Maximum likelihood estimation of regularization parameters in high-dimensional inverse problems: An empirical Bayesian approach. Part II: Theoretical analysis, SIAM Journal on Imaging Sciences, 13 (2020), 1990-2028.
doi: 10.1137/20M1339842.
|
[14]
|
A. Durmus and É. Moulines, Nonasymptotic convergence analysis for the unadjusted Langevin algorithm, Annals of Applied Probability, 27 (2017), 1551-1587.
doi: 10.1214/16-AAP1238.
|
[15]
|
A. Durmus, E. Moulines and M. Pereyra, Efficient Bayesian computation by proximal Markov chain Monte Carlo: When Langevin meets Moreau, SIAM Journal on Imaging Sciences, 11 (2018), 473-506.
doi: 10.1137/16M1108340.
|
[16]
|
J. M. Everink, Y. Dong and M. S. Andersen, Bayesian inference with projected densities, SIAM/ASA Journal on Uncertainty Quantification, 11 (2023), 1025-1043.
doi: 10.1137/22M150695X.
|
[17]
|
J. M. Everink, Y. Dong and M. S. Andersen, Sparse Bayesian inference with regularized Gaussian distributions, Inverse Problems, 39 (2023), 115004, 28 pp.
doi: 10.1088/1361-6420/acf9c5.
|
[18]
|
M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (2011), 123-214.
doi: 10.1111/j.1467-9868.2010.00765.x.
|
[19]
|
P. C. Hansen, J. Jørgensen and W. R. B. Lionheart, Computed Tomography: Algorithms, Insight, and Just Enough Theory, Fundam. Algorithms, 18. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2021.
doi: 10.1137/1.9781611976670.
|
[20]
|
J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic models, Advances in Neural Information Processing Systems, 33 (2020), 6840-6851.
|
[21]
|
M. Holden, M. Pereyra and K. C. Zygalakis, Bayesian imaging with data-driven priors encoded by neural networks, SIAM Journal on Imaging Sciences, 15 (2022), 892-924.
doi: 10.1137/21M1406313.
|
[22]
|
A. Houdard, C. Bouveyron and J. Delon, High-dimensional mixture models for unsupervised image denoising (HDMI), SIAM Journal on Imaging Sciences, 11 (2018), 2815-2846.
doi: 10.1137/17M1135694.
|
[23]
|
S. Hurault, A. Leclaire and N. Papadakis, Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization, International Conference on Machine Learning, (2022), 9483-9505.
|
[24]
|
P. E. Jacob, J. O'Leary and Y. F Atchadé, Unbiased markov chain monte carlo methods with couplings, Journal of the Royal Statistical Society Series B: Statistical Methodology, 82 (2020), 543-600.
doi: 10.1111/rssb.12336.
|
[25]
|
D. P Kingma, M. Welling, et al., An introduction to variational autoencoders, Foundations and Trends® in Machine Learning, 12 (2019), 307-392.
doi: 10.1561/2200000056.
|
[26]
|
R. Laumont, V. De Bortoli, A. Almansa, J. Delon, A. Durmus and M. Pereyra, Bayesian imaging using plug & play priors: When Langevin meets Tweedie, SIAM Journal on Imaging Sciences, 15 (2022), 701-737.
doi: 10.1137/21M1406349.
|
[27]
|
C. Louchet and L. Moisan, Posterior expectation of the total variation model: Properties and experiments, SIAM Journal on Imaging Sciences, 6 (2013), 2640-2684.
doi: 10.1137/120902276.
|
[28]
|
R. Molina, A. K. Katsaggelos and J. Mateos, Bayesian and regularization methods for hyperparameter estimation in image restoration, IEEE Transactions on Image Processing, 8 (1999), 231-246.
doi: 10.1109/83.743857.
|
[29]
|
S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem and C.-B. Schönlieb, Data-driven convex regularizers for inverse problems, ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2024), 13386-13390.
doi: 10.1109/ICASSP48485.2024.10447719.
|
[30]
|
G. Papandreou and A. L. Yuille, Gaussian sampling by local perturbations, Advances in Neural Information Processing Systems, 23 (2010).
|
[31]
|
M. Pereyra, Proximal Markov chain Monte Carlo algorithms, Statistics and Computing, 26 (2016), 745-760.
doi: 10.1007/s11222-015-9567-4.
|
[32]
|
M. Pereyra, J. M. Bioucas-Dias and M. AT Figueiredo, Maximum-a-posteriori estimation with unknown regularisation parameters, 2015 23rd European Signal Processing Conference (EUSIPCO), (2015), 230-234.
doi: 10.1109/EUSIPCO.2015.7362379.
|
[33]
|
M. Pereyra, L. V. Mieles and K. C. Zygalakis, Accelerating proximal Markov chain Monte Carlo by using an explicit stabilized method, SIAM Journal on Imaging Sciences, 13 (2020), 905-935.
doi: 10.1137/19M1283719.
|
[34]
|
M. Pereyra, L. A. Vargas-Mieles and K. C. Zygalakis, The split Gibbs sampler revisited: Improvements to its algorithmic structure and augmented target distribution, SIAM Journal on Imaging Sciences, 16 (2023), 2040-2071.
doi: 10.1137/22M1506122.
|
[35]
|
J.-C. Pesquet, A. Repetti, M. Terris and Y. Wiaux, Learning maximally monotone operators for image recovery, SIAM Journal on Imaging Sciences, 14 (2021), 1206-1237.
doi: 10.1137/20M1387961.
|
[36]
|
A. Repetti, M. Pereyra and Y. Wiaux, Scalable Bayesian Uncertainty Quantification in Imaging Inverse Problems via Convex Optimization, SIAM Journal on Imaging Sciences, 12 (2019), 87-118.
doi: 10.1137/18M1173629.
|
[37]
|
D. Rezende and S. Mohamed, Variational inference with normalizing flows, International Conference on Machine Learning, (2015), 1530-1538.
|
[38]
|
C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer Verlag, 2004.
|
[39]
|
G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli, 2 (1996), 341-363.
doi: 10.2307/3318418.
|
[40]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[41]
|
A. M. Teodoro, J. M. Bioucas-Dias and M. A. T. Figueiredo, Scene-adapted plug-and-play algorithm with guaranteed convergence: Applications to data fusion in imaging, (2018).
|
[42]
|
A. F. Vidal, V. D. Bortoli, M. Pereyra and A. Durmus, Maximum likelihood estimation of regularization parameters in high-dimensional inverse problems: An empirical Bayesian approach part I: Methodology and experiments, SIAM Journal on Imaging Sciences, 13 (2020), 1945-1989.
doi: 10.1137/20M1339829.
|
[43]
|
M. Vono, N. Dobigeon and P. Chainais, Split-and-augmented Gibbs sampler—application to large-scale inference problems, IEEE Transactions on Signal Processing, 67 (2019), 1648-1661.
doi: 10.1109/TSP.2019.2894825.
|
[44]
|
Z. Wang, J. M. Bardsley, A. Solonen, T. Cui and Y. M. Marzouk, Bayesian inverse problems with $l_1$ priors: A randomize-then-optimize approach, SIAM Journal on Scientific Computing, 39 (2017), S140-S166.
doi: 10.1137/16M1080938.
|
[45]
|
Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine, 26 (2009), 98-117.
doi: 10.1109/MSP.2008.930649.
|
[46]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[47]
|
M. Welling and Y. W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, Proceedings of the 28th International Conference on Machine learning (ICML-11), (2011), 681-688.
|
[48]
|
G. Yu, G. Sapiro and S. Mallat, Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity, IEEE Transactions on Image Processing, 21 (2011), 2481-2499.
doi: 10.1109/TIP.2011.2176743.
|
[49]
|
D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, 2011 International Conference on Computer Vision, (2011), 479-486.
doi: 10.1109/ICCV.2011.6126278.
|