\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Maximum a posteriori testing in statistical inverse problems

  • *Corresponding author: Frank Werner

    *Corresponding author: Frank Werner

The authors are supported by the German Research Foundation (DFG) under grant WE 6204/2-1. The research of RK is partially funded by the DFG under project 318763901 — SFB 1294.

Abstract / Introduction Full Text(HTML) Figure(7) Related Papers Cited by
  • This paper is concerned with a Bayesian approach to testing hypotheses in statistical inverse problems. Based on the posterior distribution $ \Pi \left(\cdot |Y = y\right) $, we want to infer whether a feature $ \langle\varphi, u^\dagger\rangle $ of the unknown quantity of interest $ u^\dagger $ is positive. This can be done by the so-called maximum a posteriori test. We provide a frequentistic analysis of this test's properties such as level and power, and prove that it is a regularized test in the sense of Kretschmann et al. (2024). Furthermore we provide lower bounds for its power under classical spectral source conditions in case of Gaussian priors. Numerical simulations illustrate its superior performance both in moderately and severely ill-posed situations.

    Mathematics Subject Classification: Primary: 47A52; Secondary: 62F15, 62G10, 62G20, 65J20, 65J22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The function $ \varphi_{l, \beta} $ with $ l = \frac{5}{128} $ for $ \beta = 1 $ () and the corresponding $ \beta_{\mathrm{conv}}, \beta_{\mathrm{antider}} $ chosen such that $ \varphi_{l, \beta} \in \operatorname{ran} T^* $ (), and the truth $ u^\dagger $ ()

    Figure 2.  Exact powers of the unregularized test (), the oracle MAP test (), and the oracle a priori MAP test (), the oracle lower bound for the power of the a priori MAP test (), the empirical power of the 2 sample MAP test (), and the empirical power () and level () of the 1 sample MAP test for the deconvolution problem with different values of $ \beta $ and $ \mu $

    Figure 3.  Choice of $ \gamma_0 $ by the oracle MAP test () as well as mean (), $ 16 \% $ and $ 84 \% $ quantiles () of the choice of $ \gamma_0 $ by the a posteriori MAP test for the deconvolution problem.

    Figure 4.  Exact powers of the unregularized test (), the oracle MAP test (), and the oracle a priori MAP test (), the oracle lower bound for the power of the a priori MAP test (), the empirical power of the 2 sample MAP test (), and the empirical power () and level () of the 1 sample MAP test for the differentiation problem with different values of $ \beta $ and $ \mu $

    Figure 5.  Choice of $ \gamma_0 $ by the oracle MAP test () as well as mean (), $ 16 \% $ and $ 84 \% $ quantiles () of the choice of $ \gamma_0 $ by the a posteriori MAP test for the differentiation problem.

    Figure 6.  Exact powers of the unregularized test (), the oracle MAP test (), and the oracle a priori MAP test (), the oracle lower bound for the power of the a priori MAP test (), the empirical power of the 2 sample MAP test (), and the empirical power () and level () of the 1 sample MAP test for the backward heat equation with $ \beta = 1 $ and different values of $ \mu $

    Figure 7.  Choice of $ \gamma_0 $ by the oracle MAP test () as well as mean (), $ 16 \% $ and $ 84 \% $ quantiles () of the choice of $ \gamma_0 $ by the a posteriori MAP test for the backward heat equation.

  • [1] F. Abramovich and B. W. Silverman, Wavelet decomposition approaches to statistical inverse problems, Biometrika, 85 (1998), 115-129.  doi: 10.1093/biomet/85.1.115.
    [2] S. Agapiou and P. Mathé, Posterior contraction in Bayesian inverse problems under gaussian priors, New Trends in Parameter Identification for Mathematical Models, Springer International Publishing, Cham, 2018, 1-29. doi: 10.1007/978-3-319-70824-9_1.
    [3] N. Bissantz, T. Hohage, A. Munk and F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., 45 (2007), 2610-2636 (electronic). doi: 10.1137/060651884.
    [4] G. Da Prato, An Introduction to Infinite-Dimensional Analysis, Universitext, Springer, 2006. doi: 10.1007/3-540-29021-4.
    [5] D. L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition, Appl. Comput. Harmon. Anal., 2 (1995), 101-126.  doi: 10.1006/acha.1995.1008.
    [6] F. DunkerK. EckleK. Proksch and J. Schmidt-Hieber, Tests for qualitative features in the random coefficients model, Electron. J. Stat., 13 (2019), 2257-2306.  doi: 10.1214/19-EJS1570.
    [7] K. EckleN. Bissantz and H. Dette, Multiscale inference for multivariate deconvolution, Electon. J. Stat., 11 (2017), 4179-4219.  doi: 10.1214/17-EJS1355.
    [8] H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Springer, Dordrecht, 1996.
    [9] E. Giné and  R. NicklMathematical Foundations of Infinite-Dimensional Statistical Models, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2015.  doi: 10.1017/CBO9781107337862.
    [10] T. Hohage and F. Werner, Convergence rates for inverse problems with impulsive noise, SIAM J. Numer. Anal., 52 (2014), 1203-1221.  doi: 10.1137/130932661.
    [11] Y. IngsterB. Laurent and C. Marteau, Signal detection for inverse problems in a multidimensional framework, Math. Methods Statist., 23 (2014), 279-305.  doi: 10.3103/S1066530714040036.
    [12] Y. I. IngsterT. Sapatinas and I. A. Suslina, Minimax signal detection in ill-posed inverse problems, Ann. Statist., 40 (2012), 1524-1549.  doi: 10.1214/12-AOS1011.
    [13] I. M. Johnstone and B. W. Silverman, Discretization effects in statistical inverse problems, J. Complexity, 7 (1991), 1-34.  doi: 10.1016/0885-064X(91)90042-V.
    [14] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160 of Applied Mathematical Sciences, Springer-Verlag, New York, 2005. doi: 10.1007/b138659.
    [15] A. Klenke, Probability Theory, 3rd edition, Universitext, Springer Cham, 2020. doi: 10.1007/978-3-030-56402-5.
    [16] R. Kretschmann, D. Wachsmuth and F. Werner, Optimal regularized hypothesis testing in statistical inverse problems, Inverse Problems, 40 (2024), 015013, 33 pp. doi: 10.1088/1361-6420/ad1132.
    [17] A. Laforgia and S. Sismondi, Monotonicity results and inequalities for the gamma and error functions, Journal of Computational and Applied Mathematics, 23 (1988), 25-33.  doi: 10.1016/0377-0427(88)90328-7.
    [18] S. Lasanen, Non-gaussian statistical inverse problems. part i: Posterior distributions, Inverse Probl. Imag., 6 (2012), 215-266.  doi: 10.3934/ipi.2012.6.215.
    [19] S. Lasanen, Non-gaussian statistical inverse problems. part ii: Posterior convergence for approximated unknowns, Inverse Probl. Imag., 6 (2012), 267-287.  doi: 10.3934/ipi.2012.6.267.
    [20] M. LassasE. Saksman and S. Siltanen, Discretization-invariant bayesian inversion and besov space priors, Inverse Probl. Imag., 3 (2009), 87-122.  doi: 10.3934/ipi.2009.3.87.
    [21] M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563.  doi: 10.1088/0266-5611/20/5/013.
    [22] B. LaurentJ.-M. Loubes and C. Marteau, Non asymptotic minimax rates of testing in signal detection with heterogeneous variances, Electron. J. Stat., 6 (2012), 91-122.  doi: 10.1214/12-EJS667.
    [23] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3rd edition, Springer Texts in Statistics, Springer New York, 2005.
    [24] M. S. LehtinenL. Päivärinta and E. Somersalo, Linear inverse problems for generalized random variables, Inverse Problems, 5 (1989), 599-612.  doi: 10.1088/0266-5611/5/4/011.
    [25] K. LinS. Lu and P. Mathé, Oracle-type posterior contraction rates in bayesian inverse problems, Inv. Probl. Imag., 9 (2015), 895-915.  doi: 10.3934/ipi.2015.9.895.
    [26] B. A. Mair and F. H. Ruymgaart, Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math., 56 (1996), 1424-1444.  doi: 10.1137/S0036139994264476.
    [27] C. Marteau and P. Mathé, General regularization schemes for signal detection in inverse problems, Math. Methods Statist., 23 (2014), 176-200.  doi: 10.3103/S1066530714030028.
    [28] R. Nickl, Bernstein–von Mises theorems for statistical inverse problems Ⅰ: Schrödinger equation, Journal of the European Mathematical Society, 22 (2020), 2697-2750.  doi: 10.4171/jems/975.
    [29] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th edition, McGraw-Hill Series in Electrical and Computer Engineering, McGraw-Hill, 2002.
    [30] K. ProkschF. Werner and A. Munk, Multiscale scanning in inverse problems, Ann. Statist., 46 (2018), 3569-3602.  doi: 10.1214/17-AOS1669.
    [31] J. Schmidt-HieberA. Munk and L. Dümbgen, Multiscale methods for shape constraints in deconvolution: Confidence statements for qualitative features, Ann. Statist., 41 (2013), 1299-1328.  doi: 10.1214/13-AOS1089.
    [32] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.  doi: 10.1017/S0962492910000061.
    [33] F. Werner, Adaptivity and oracle inequalities in linear statistical inverse problems: A (numerical) survey, in New Trends in Parameter Identification for Mathematical Models, Trends Math., Birkhäuser/Springer, Cham, 2018, 291-316. doi: 10.1007/978-3-319-70824-9_15.
    [34] E. Zeidler, Applied Functional Analysis. Pt. 1. Applications to Mathematical Physics, vol. 108 of Applied Mathematical Sciences, 1st edition, Springer New York, 1995.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(89) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return