-
Previous Article
Global optimal feedbacks for stochastic quantized nonlinear event systems
- JCD Home
- This Issue
-
Next Article
An equation-free approach to coarse-graining the dynamics of networks
A closing scheme for finding almost-invariant sets in open dynamical systems
1. | School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052 |
2. | School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia |
3. | School of Mathematics and Statistics, The University of New South Wales, Sydney NSW 2052, Australia |
References:
[1] |
W. Bahsoun, Rigorous numerical approximation of escape rates,, Nonlinearity, 19 (2006), 25.
doi: 10.1088/0951-7715/19/11/002. |
[2] |
M. S. Bartlett, Stochastic Population Models in Ecology and Epidemiology,, Methuen, (1960).
|
[3] |
L. Billings and I. B. Schwartz, Identifying almost invariant sets in stochastic dynamical systems,, Chaos, 18 (2008).
doi: 10.1063/1.2929748. |
[4] |
C. Bose, G. Froyland, C. Gonzáles Tokman and R. Murray, Ulam's method for Lasota-Yorke maps with holes,, To appear in SIAM J. Appl. Dynam. Syst. , (). Google Scholar |
[5] |
A. Boyarsky and P. Gora, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension (Probability and its Applications),, Springer, (1997).
doi: 10.1007/978-1-4612-2024-4. |
[6] |
P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues,, Springer-Verlag, (1999).
|
[7] |
H. Bruin, M. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes,, Ergodic Theory and Dynamical Systems, 30 (2010), 687.
doi: 10.1017/S0143385709000200. |
[8] |
D. Clancy and P. K. Pollett, A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic,, Journal of Applied Probability, 40 (2003), 821.
doi: 10.1239/jap/1059060909. |
[9] |
P. Collet, S. Martínez and V. Maume-Deschamps, On the existence of conditionally invariant probability measures in dynamical systems,, Nonlinearity, 13 (2000), 1263.
doi: 10.1088/0951-7715/13/4/315. |
[10] |
P. Collet, S. Martínez and B. Schmitt, The Lasota-Yorke measure and the asymptotic law in the limit Cantor set of expanding systems,, Nonlinearity, 7 (1996), 1437.
doi: 10.1088/0951-7715/7/5/010. |
[11] |
P. Collet, S. Martínez and B. Schmitt, On the enhancement of diffusion by chaos, escape rates and stochastic stability,, Transactions of the American Mathematical Society, 351 (1999), 2875.
doi: 10.1090/S0002-9947-99-02023-1. |
[12] |
M. Dellnitz, G. Froyland, C. Horenkamp, K. Padberg-Gehle and A. Sen Gupta, Seasonal variability of the subpolar gyres in the southern ocean: A numerical investigation based on transfer operators,, Nonlinear Processes in Geophysics, 16 (2009), 655.
doi: 10.5194/npg-16-655-2009. |
[13] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - set oriented numerical methods for dynamical systems,, In Ergodic Theory, (2001), 145.
|
[14] |
M. Dellnitz and O. Junge, Almost-invariant sets in Chua's circuit,, International Journal of Bifurcation and Chaos Appl. Sci. Engrg., 7 (1997), 2475.
doi: 10.1142/S0218127497001655. |
[15] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.
doi: 10.1137/S0036142996313002. |
[16] |
M. Demers, Markov extensions for dynamical systems with holes: An application to expanding maps of the interval,, Israel J. Math., 146 (2005), 189.
doi: 10.1007/BF02773533. |
[17] |
M. Demers and L.-S. Young, Escape rates and conditionally invariant measures,, Nonlinearity, 19 (2006), 377.
doi: 10.1088/0951-7715/19/2/008. |
[18] |
P. Deuflhard, M. Dellnitz, O. Junge and C. Schütte, Computation of essential molecular dynamics by subdivision techniques,, in Computational Molecular Dynamics: Challenges, (1999), 98.
doi: 10.1007/978-3-642-58360-5. |
[19] |
P. Deuflhard, W. Huisinga, A. Fischer and C. Schütte, Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains,, Linear Algebra and its Applications, 315 (2000), 39.
doi: 10.1016/S0024-3795(00)00095-1. |
[20] |
J. Ding and A. Zhou, Finite element approximations of Frobenius-Perron operators - a solution to Ulam's conjecture for multi-dimensional transformations,, Physica D, 92 (1996), 61. Google Scholar |
[21] |
J. Ding and A. Zhou, Statistical Properties of Deterministic Systems,, Springer, (2009).
doi: 10.1007/978-3-540-85367-1. |
[22] |
P.A. Ferrari, H. Kesten, S. Martínez and S. Picco, Existence of quasistationary distributions. a renewal dynamical approach,, Annals of Probability, 23 (1995), 501.
doi: 10.1214/aop/1176988277. |
[23] |
G. Froyland, Finite approximation of Sinai-Bowen-Ruelle measures of Anosov systems in two dimensions,, Random Comput. Dynamics, 3 (1995), 251.
|
[24] |
G. Froyland, Ulam's method for random interval maps,, Nonlinearity, 12 (1999), 1029.
doi: 10.1088/0951-7715/12/4/318. |
[25] |
G. Froyland, Extracting dynamical behaviour via Markov models,, in Nonlinear Dynamics and Statistics: Proceedings, (2001), 283.
|
[26] |
G. Froyland, Statistically optimal almost-invariant sets,, Physica D, 200 (2005), 205.
doi: 10.1016/j.physd.2004.11.008. |
[27] |
G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal Sci. Comput., 24 (2003), 1839.
doi: 10.1137/S106482750238911X. |
[28] |
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds: Connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507.
doi: 10.1016/j.physd.2009.03.002. |
[29] |
G. Froyland, K. Padberg, M. England and A.-M. Treguier, Detection of coherent oceanic structures via transfer operators,, Physics Review Letters, 98 (2007). Google Scholar |
[30] |
G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010).
doi: 10.1063/1.3502450. |
[31] |
G. Froyland and O. Stancevic, Escape rates and Perron-Frobenius operators: Open and closed dynamical systems,, Disc. Cont. Dynam. Sys. B, 14 (2010), 457.
doi: 10.3934/dcdsb.2010.14.457. |
[32] |
C. González Tokman, B.R. Hunt and P. Wright, Approximating invariant densities of metastable systems,, Ergodic Theory and Dynamical Systems, 31 (2010), 1345. Google Scholar |
[33] |
G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae,, Journal of Statistical Physics, 135 (2009), 519.
doi: 10.1007/s10955-009-9747-8. |
[34] |
T.-Y. Li, Finite approximation for the Perron-Frobenius operator: a solution to Ulam's conjecture,, Journal of Approximation Theory, 17 (1976), 177.
doi: 10.1016/0021-9045(76)90037-X. |
[35] |
C. Liverani and V. Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set,, Ann. Inst. H. Poinc. Probab. Statist., 39 (2003), 385.
doi: 10.1016/S0246-0203(02)00005-5. |
[36] |
R. Murray, Discrete Approximation of Invariant Densities,, Ph.D thesis, (1997). Google Scholar |
[37] |
R. Murray, Ulam's method for some non-uniformly expanding maps,, Discrete and continuous dynamical systems, 26 (2010), 1007.
doi: 10.3934/dcds.2010.26.1007. |
[38] |
G. Pianigiani and J. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos,, Transactions of the American Mathematical Society, 252 (1979), 351.
doi: 10.2307/1998093. |
[39] |
V. Rom-Kedar, A. Leonard and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow,, Journal of Fluid Mechanics, 214 (1990), 347.
doi: 10.1017/S0022112090000167. |
[40] |
V. Rom-Kedar and S. Wiggins, Transport in two-dimensional maps,, Archive for Rational Mechanics and Analysis, 109 (1990), 239.
doi: 10.1007/BF00375090. |
[41] |
C. Schütte, Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules,, Ph.D thesis, (1999). Google Scholar |
[42] |
S. C. Shadden, F. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,, Physica D, 212 (2005), 217.
doi: 10.1016/j.physd.2005.10.007. |
[43] |
A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov chains,, Information and Computation, 82 (1989), 93.
doi: 10.1016/0890-5401(89)90067-9. |
[44] |
M. A. Stremler, S. D. Ross, P. Grover and P. Kumar, Topological chaos and periodic braiding of almost-cyclic sets,, Phys. Rev. Lett., 106 (2011).
doi: 10.1103/PhysRevLett.106.114101. |
[45] |
S. Ulam, A Collection of Mathematical Problems,, Interscience, (1979).
|
[46] |
P. Walters, An introduction to Ergodic Theory,, Springer-Verlag, (1982).
|
[47] |
S. Wiggins, Chaotic Transport in Dynamical Systems,, Springer, (1992).
|
show all references
References:
[1] |
W. Bahsoun, Rigorous numerical approximation of escape rates,, Nonlinearity, 19 (2006), 25.
doi: 10.1088/0951-7715/19/11/002. |
[2] |
M. S. Bartlett, Stochastic Population Models in Ecology and Epidemiology,, Methuen, (1960).
|
[3] |
L. Billings and I. B. Schwartz, Identifying almost invariant sets in stochastic dynamical systems,, Chaos, 18 (2008).
doi: 10.1063/1.2929748. |
[4] |
C. Bose, G. Froyland, C. Gonzáles Tokman and R. Murray, Ulam's method for Lasota-Yorke maps with holes,, To appear in SIAM J. Appl. Dynam. Syst. , (). Google Scholar |
[5] |
A. Boyarsky and P. Gora, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension (Probability and its Applications),, Springer, (1997).
doi: 10.1007/978-1-4612-2024-4. |
[6] |
P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues,, Springer-Verlag, (1999).
|
[7] |
H. Bruin, M. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes,, Ergodic Theory and Dynamical Systems, 30 (2010), 687.
doi: 10.1017/S0143385709000200. |
[8] |
D. Clancy and P. K. Pollett, A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic,, Journal of Applied Probability, 40 (2003), 821.
doi: 10.1239/jap/1059060909. |
[9] |
P. Collet, S. Martínez and V. Maume-Deschamps, On the existence of conditionally invariant probability measures in dynamical systems,, Nonlinearity, 13 (2000), 1263.
doi: 10.1088/0951-7715/13/4/315. |
[10] |
P. Collet, S. Martínez and B. Schmitt, The Lasota-Yorke measure and the asymptotic law in the limit Cantor set of expanding systems,, Nonlinearity, 7 (1996), 1437.
doi: 10.1088/0951-7715/7/5/010. |
[11] |
P. Collet, S. Martínez and B. Schmitt, On the enhancement of diffusion by chaos, escape rates and stochastic stability,, Transactions of the American Mathematical Society, 351 (1999), 2875.
doi: 10.1090/S0002-9947-99-02023-1. |
[12] |
M. Dellnitz, G. Froyland, C. Horenkamp, K. Padberg-Gehle and A. Sen Gupta, Seasonal variability of the subpolar gyres in the southern ocean: A numerical investigation based on transfer operators,, Nonlinear Processes in Geophysics, 16 (2009), 655.
doi: 10.5194/npg-16-655-2009. |
[13] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - set oriented numerical methods for dynamical systems,, In Ergodic Theory, (2001), 145.
|
[14] |
M. Dellnitz and O. Junge, Almost-invariant sets in Chua's circuit,, International Journal of Bifurcation and Chaos Appl. Sci. Engrg., 7 (1997), 2475.
doi: 10.1142/S0218127497001655. |
[15] |
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.
doi: 10.1137/S0036142996313002. |
[16] |
M. Demers, Markov extensions for dynamical systems with holes: An application to expanding maps of the interval,, Israel J. Math., 146 (2005), 189.
doi: 10.1007/BF02773533. |
[17] |
M. Demers and L.-S. Young, Escape rates and conditionally invariant measures,, Nonlinearity, 19 (2006), 377.
doi: 10.1088/0951-7715/19/2/008. |
[18] |
P. Deuflhard, M. Dellnitz, O. Junge and C. Schütte, Computation of essential molecular dynamics by subdivision techniques,, in Computational Molecular Dynamics: Challenges, (1999), 98.
doi: 10.1007/978-3-642-58360-5. |
[19] |
P. Deuflhard, W. Huisinga, A. Fischer and C. Schütte, Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains,, Linear Algebra and its Applications, 315 (2000), 39.
doi: 10.1016/S0024-3795(00)00095-1. |
[20] |
J. Ding and A. Zhou, Finite element approximations of Frobenius-Perron operators - a solution to Ulam's conjecture for multi-dimensional transformations,, Physica D, 92 (1996), 61. Google Scholar |
[21] |
J. Ding and A. Zhou, Statistical Properties of Deterministic Systems,, Springer, (2009).
doi: 10.1007/978-3-540-85367-1. |
[22] |
P.A. Ferrari, H. Kesten, S. Martínez and S. Picco, Existence of quasistationary distributions. a renewal dynamical approach,, Annals of Probability, 23 (1995), 501.
doi: 10.1214/aop/1176988277. |
[23] |
G. Froyland, Finite approximation of Sinai-Bowen-Ruelle measures of Anosov systems in two dimensions,, Random Comput. Dynamics, 3 (1995), 251.
|
[24] |
G. Froyland, Ulam's method for random interval maps,, Nonlinearity, 12 (1999), 1029.
doi: 10.1088/0951-7715/12/4/318. |
[25] |
G. Froyland, Extracting dynamical behaviour via Markov models,, in Nonlinear Dynamics and Statistics: Proceedings, (2001), 283.
|
[26] |
G. Froyland, Statistically optimal almost-invariant sets,, Physica D, 200 (2005), 205.
doi: 10.1016/j.physd.2004.11.008. |
[27] |
G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal Sci. Comput., 24 (2003), 1839.
doi: 10.1137/S106482750238911X. |
[28] |
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds: Connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507.
doi: 10.1016/j.physd.2009.03.002. |
[29] |
G. Froyland, K. Padberg, M. England and A.-M. Treguier, Detection of coherent oceanic structures via transfer operators,, Physics Review Letters, 98 (2007). Google Scholar |
[30] |
G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010).
doi: 10.1063/1.3502450. |
[31] |
G. Froyland and O. Stancevic, Escape rates and Perron-Frobenius operators: Open and closed dynamical systems,, Disc. Cont. Dynam. Sys. B, 14 (2010), 457.
doi: 10.3934/dcdsb.2010.14.457. |
[32] |
C. González Tokman, B.R. Hunt and P. Wright, Approximating invariant densities of metastable systems,, Ergodic Theory and Dynamical Systems, 31 (2010), 1345. Google Scholar |
[33] |
G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae,, Journal of Statistical Physics, 135 (2009), 519.
doi: 10.1007/s10955-009-9747-8. |
[34] |
T.-Y. Li, Finite approximation for the Perron-Frobenius operator: a solution to Ulam's conjecture,, Journal of Approximation Theory, 17 (1976), 177.
doi: 10.1016/0021-9045(76)90037-X. |
[35] |
C. Liverani and V. Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set,, Ann. Inst. H. Poinc. Probab. Statist., 39 (2003), 385.
doi: 10.1016/S0246-0203(02)00005-5. |
[36] |
R. Murray, Discrete Approximation of Invariant Densities,, Ph.D thesis, (1997). Google Scholar |
[37] |
R. Murray, Ulam's method for some non-uniformly expanding maps,, Discrete and continuous dynamical systems, 26 (2010), 1007.
doi: 10.3934/dcds.2010.26.1007. |
[38] |
G. Pianigiani and J. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos,, Transactions of the American Mathematical Society, 252 (1979), 351.
doi: 10.2307/1998093. |
[39] |
V. Rom-Kedar, A. Leonard and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow,, Journal of Fluid Mechanics, 214 (1990), 347.
doi: 10.1017/S0022112090000167. |
[40] |
V. Rom-Kedar and S. Wiggins, Transport in two-dimensional maps,, Archive for Rational Mechanics and Analysis, 109 (1990), 239.
doi: 10.1007/BF00375090. |
[41] |
C. Schütte, Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules,, Ph.D thesis, (1999). Google Scholar |
[42] |
S. C. Shadden, F. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,, Physica D, 212 (2005), 217.
doi: 10.1016/j.physd.2005.10.007. |
[43] |
A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov chains,, Information and Computation, 82 (1989), 93.
doi: 10.1016/0890-5401(89)90067-9. |
[44] |
M. A. Stremler, S. D. Ross, P. Grover and P. Kumar, Topological chaos and periodic braiding of almost-cyclic sets,, Phys. Rev. Lett., 106 (2011).
doi: 10.1103/PhysRevLett.106.114101. |
[45] |
S. Ulam, A Collection of Mathematical Problems,, Interscience, (1979).
|
[46] |
P. Walters, An introduction to Ergodic Theory,, Springer-Verlag, (1982).
|
[47] |
S. Wiggins, Chaotic Transport in Dynamical Systems,, Springer, (1992).
|
[1] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[2] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[3] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[4] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[5] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[8] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[9] |
Hala Ghazi, François James, Hélène Mathis. A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2371-2409. doi: 10.3934/dcdsb.2020183 |
[10] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[11] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[12] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[13] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[14] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[15] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[16] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[17] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[18] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[19] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[20] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]