-
Previous Article
On the consistency of ensemble transform filter formulations
- JCD Home
- This Issue
-
Next Article
A closing scheme for finding almost-invariant sets in open dynamical systems
Global optimal feedbacks for stochastic quantized nonlinear event systems
1. | Technische Universität München, Boltzmannstr. 3, 85747 Garching, Germany, Germany, Germany |
References:
[1] |
K. Aström, Event based control,, in Analysis and Design of Nonlinear Control Systems (eds. A. Astolfi and L. Marconi), (2008), 127.
doi: 10.1007/978-3-540-74358-3_9. |
[2] |
K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design,, Third Edition, (2011). Google Scholar |
[3] |
S.-I. Azuma and T. Sugie, Dynamic quantization of nonlinear control systems,, Automatic Control, 57 (2012), 875.
doi: 10.1109/TAC.2011.2167824. |
[4] |
D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 2.,, Belmont, (1995). Google Scholar |
[5] |
R. S. Bucy, Stability and positive supermartingales,, J. Differential Equations, 1 (1965), 151.
doi: 10.1016/0022-0396(65)90016-1. |
[6] |
C. De Persis and F. Mazenc, Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach,, in Proc. of IEEE Conf. on Decision and Control, (2009), 4093. Google Scholar |
[7] |
W. Fleming, The convergence problem for differential games,, Journal of Mathematical Analysis and Applications, 3 (1961), 102.
doi: 10.1016/0022-247X(61)90009-9. |
[8] |
D. Förstner, M. Jung and J. Lunze, A discrete-event model of asynchronous quantised systems,, Automatica, 38 (2002), 1277.
doi: 10.1016/S0005-1098(02)00023-7. |
[9] |
E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach,, Automatica, 45 (2009), 2258.
doi: 10.1016/j.automatica.2009.05.020. |
[10] |
L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proc. 46th IEEE CDC, (2007), 702. Google Scholar |
[11] |
L. Grüne and O. Junge, Global optimal control of perturbed systems,, JOTA, 136 (2008), 411.
doi: 10.1007/s10957-007-9312-z. |
[12] |
L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proc. 48th IEEE CDC, (2009), 5311. Google Scholar |
[13] |
J. P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent results in networked control systems,, Proc. IEEE, 95 (2007), 138.
doi: 10.1109/JPROC.2006.887288. |
[14] |
O. Junge, Rigorous discretization of subdivision techniques,, in EQUADIFF 99, (2000), 916.
|
[15] |
O. Junge and H. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.
doi: 10.1051/cocv:2004006. |
[16] |
E. Kofman and J. Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints,, in Proc. IEEE CDC, (2006), 4423.
doi: 10.1109/CDC.2006.377483. |
[17] |
H. Kushner, On the stability of stochastic dynamical systems,, Proc. Nat. Acad. Sci. USA, 53 (1965), 8.
doi: 10.1073/pnas.53.1.8. |
[18] |
H. Kushner, Stochastic Stability and Control,, Mathematics in Science and Engineering, (1967).
|
[19] |
H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,, Applications of Mathematics, (1997).
|
[20] |
D. Liberzon, Quantization, time delays, and nonlinear stabilization,, IEEE Transactions on Automatic Control, 51 (2006), 1190.
doi: 10.1109/TAC.2006.878780. |
[21] |
D. Liberzon, Nonlinear control with limited information,, Commun. Inf. Syst., 9 (2009), 41.
doi: 10.4310/CIS.2009.v9.n1.a2. |
[22] |
L. Litz, T. Gabriel, M. Groß and O. Gabel, Networked Control Systems (NCS) - Stand und Ausblick,, at - Automatisierungstechnik, 56 (2009), 4.
doi: 10.1524/auto.2008.0682. |
[23] |
T. Liu, Z.-P. Jiang and D. J. Hill, Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,, Automatic Control, 57 (2012), 1326.
doi: 10.1109/TAC.2012.2191870. |
[24] |
U. Lorenz and B. Monien, Error analysis in minimax trees,, TCS, 313 (2004), 485.
doi: 10.1016/j.tcs.2002.10.004. |
[25] |
J. Lunze, Qualitative modelling of linear dynamical systems with quantized state measurements,, Automatica, 30 (1994), 417.
doi: 10.1016/0005-1098(94)90119-8. |
[26] |
S. Mastellone, C. Abdallah and P. Dorato, Model-based networked control for nonlinear systems with stochastic packet dropout,, in Proc. American Control Conference., 4 (2005), 2365.
doi: 10.1109/ACC.2005.1470320. |
[27] |
D. Nesic and D. Liberzon, A unified framework for design and analysis of networked and quantized control systems,, IEEE Transactions on Automatic Control, 54 (2009), 732.
doi: 10.1109/TAC.2009.2014930. |
[28] |
G. Pola, P. Pepe, M. D. D. Benedetto and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations,, Systems and Control Letters, 59 (2010), 365.
doi: 10.1016/j.sysconle.2010.04.001. |
[29] |
R. Sailer and F. Wirth, Stabilization of nonlinear systems with delayed data-rate-limited feedback,, in Proc. European Control Conference, (2009), 1734. Google Scholar |
[30] |
J. Schroeder, Modeling, State Observation and Diagnosis of Quantized Systems,, Springer, (2003).
|
[31] |
P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Transactions on Automatic Control, 52 (2007), 1680.
doi: 10.1109/TAC.2007.904277. |
[32] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comp. Math., 2 (2002), 53.
|
[33] |
M. von Lossow, A min-man version of Dijkstra's algorithm with application to perturbed optimal control problems.,, in In: Proceedings of the GAMM Annual Meeting, (2007). Google Scholar |
[34] |
X. Wang and M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays,, Hybrid Systems: Computation and control (HSCC), (5469), 366.
doi: 10.1007/978-3-642-00602-9_26. |
[35] |
C. Zhang, K. Chen and G. Dullerud, Stabilization of markovian jump linear systems with limited information - a convex approach,, in Proc. ACC, (2009), 4013.
doi: 10.1109/ACC.2009.5160685. |
[36] |
C. Zhang and G. Dullerud, Uniform stabilization of markovian jump linear systems with logarithmic quantization,, in Proc. IEEE CDC, (2009), 2094.
doi: 10.1109/CDC.2009.5400361. |
[37] |
L. Zhang, H. Gao and O. Kaynak, Network-induced constraints in networked control systems-a survey,, IEEE Transactions on Industrial Informatics, 9 (2013), 403.
doi: 10.1109/TII.2012.2219540. |
show all references
References:
[1] |
K. Aström, Event based control,, in Analysis and Design of Nonlinear Control Systems (eds. A. Astolfi and L. Marconi), (2008), 127.
doi: 10.1007/978-3-540-74358-3_9. |
[2] |
K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design,, Third Edition, (2011). Google Scholar |
[3] |
S.-I. Azuma and T. Sugie, Dynamic quantization of nonlinear control systems,, Automatic Control, 57 (2012), 875.
doi: 10.1109/TAC.2011.2167824. |
[4] |
D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 2.,, Belmont, (1995). Google Scholar |
[5] |
R. S. Bucy, Stability and positive supermartingales,, J. Differential Equations, 1 (1965), 151.
doi: 10.1016/0022-0396(65)90016-1. |
[6] |
C. De Persis and F. Mazenc, Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach,, in Proc. of IEEE Conf. on Decision and Control, (2009), 4093. Google Scholar |
[7] |
W. Fleming, The convergence problem for differential games,, Journal of Mathematical Analysis and Applications, 3 (1961), 102.
doi: 10.1016/0022-247X(61)90009-9. |
[8] |
D. Förstner, M. Jung and J. Lunze, A discrete-event model of asynchronous quantised systems,, Automatica, 38 (2002), 1277.
doi: 10.1016/S0005-1098(02)00023-7. |
[9] |
E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach,, Automatica, 45 (2009), 2258.
doi: 10.1016/j.automatica.2009.05.020. |
[10] |
L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proc. 46th IEEE CDC, (2007), 702. Google Scholar |
[11] |
L. Grüne and O. Junge, Global optimal control of perturbed systems,, JOTA, 136 (2008), 411.
doi: 10.1007/s10957-007-9312-z. |
[12] |
L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proc. 48th IEEE CDC, (2009), 5311. Google Scholar |
[13] |
J. P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent results in networked control systems,, Proc. IEEE, 95 (2007), 138.
doi: 10.1109/JPROC.2006.887288. |
[14] |
O. Junge, Rigorous discretization of subdivision techniques,, in EQUADIFF 99, (2000), 916.
|
[15] |
O. Junge and H. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.
doi: 10.1051/cocv:2004006. |
[16] |
E. Kofman and J. Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints,, in Proc. IEEE CDC, (2006), 4423.
doi: 10.1109/CDC.2006.377483. |
[17] |
H. Kushner, On the stability of stochastic dynamical systems,, Proc. Nat. Acad. Sci. USA, 53 (1965), 8.
doi: 10.1073/pnas.53.1.8. |
[18] |
H. Kushner, Stochastic Stability and Control,, Mathematics in Science and Engineering, (1967).
|
[19] |
H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,, Applications of Mathematics, (1997).
|
[20] |
D. Liberzon, Quantization, time delays, and nonlinear stabilization,, IEEE Transactions on Automatic Control, 51 (2006), 1190.
doi: 10.1109/TAC.2006.878780. |
[21] |
D. Liberzon, Nonlinear control with limited information,, Commun. Inf. Syst., 9 (2009), 41.
doi: 10.4310/CIS.2009.v9.n1.a2. |
[22] |
L. Litz, T. Gabriel, M. Groß and O. Gabel, Networked Control Systems (NCS) - Stand und Ausblick,, at - Automatisierungstechnik, 56 (2009), 4.
doi: 10.1524/auto.2008.0682. |
[23] |
T. Liu, Z.-P. Jiang and D. J. Hill, Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,, Automatic Control, 57 (2012), 1326.
doi: 10.1109/TAC.2012.2191870. |
[24] |
U. Lorenz and B. Monien, Error analysis in minimax trees,, TCS, 313 (2004), 485.
doi: 10.1016/j.tcs.2002.10.004. |
[25] |
J. Lunze, Qualitative modelling of linear dynamical systems with quantized state measurements,, Automatica, 30 (1994), 417.
doi: 10.1016/0005-1098(94)90119-8. |
[26] |
S. Mastellone, C. Abdallah and P. Dorato, Model-based networked control for nonlinear systems with stochastic packet dropout,, in Proc. American Control Conference., 4 (2005), 2365.
doi: 10.1109/ACC.2005.1470320. |
[27] |
D. Nesic and D. Liberzon, A unified framework for design and analysis of networked and quantized control systems,, IEEE Transactions on Automatic Control, 54 (2009), 732.
doi: 10.1109/TAC.2009.2014930. |
[28] |
G. Pola, P. Pepe, M. D. D. Benedetto and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations,, Systems and Control Letters, 59 (2010), 365.
doi: 10.1016/j.sysconle.2010.04.001. |
[29] |
R. Sailer and F. Wirth, Stabilization of nonlinear systems with delayed data-rate-limited feedback,, in Proc. European Control Conference, (2009), 1734. Google Scholar |
[30] |
J. Schroeder, Modeling, State Observation and Diagnosis of Quantized Systems,, Springer, (2003).
|
[31] |
P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Transactions on Automatic Control, 52 (2007), 1680.
doi: 10.1109/TAC.2007.904277. |
[32] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comp. Math., 2 (2002), 53.
|
[33] |
M. von Lossow, A min-man version of Dijkstra's algorithm with application to perturbed optimal control problems.,, in In: Proceedings of the GAMM Annual Meeting, (2007). Google Scholar |
[34] |
X. Wang and M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays,, Hybrid Systems: Computation and control (HSCC), (5469), 366.
doi: 10.1007/978-3-642-00602-9_26. |
[35] |
C. Zhang, K. Chen and G. Dullerud, Stabilization of markovian jump linear systems with limited information - a convex approach,, in Proc. ACC, (2009), 4013.
doi: 10.1109/ACC.2009.5160685. |
[36] |
C. Zhang and G. Dullerud, Uniform stabilization of markovian jump linear systems with logarithmic quantization,, in Proc. IEEE CDC, (2009), 2094.
doi: 10.1109/CDC.2009.5400361. |
[37] |
L. Zhang, H. Gao and O. Kaynak, Network-induced constraints in networked control systems-a survey,, IEEE Transactions on Industrial Informatics, 9 (2013), 403.
doi: 10.1109/TII.2012.2219540. |
[1] |
Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i |
[2] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[3] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[4] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[5] |
Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2020, 16 (2) : 965-990. doi: 10.3934/jimo.2018188 |
[6] |
Sang-Heon Lee. Development of concurrent structural decentralised discrete event system using bisimulation concept. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 305-317. doi: 10.3934/naco.2016013 |
[7] |
Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 |
[8] |
Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229 |
[9] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[10] |
Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1341-1354. doi: 10.3934/dcdss.2019092 |
[11] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[12] |
Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19 |
[13] |
Jing Zhang, Jiahui Qian, Han Zhang, Ling He, Bin Li, Jing Qin, Hongning Dai, Wei Tang, Weidong Tian. Maxillofacial surgical simulation system with haptic feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020137 |
[14] |
Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144 |
[15] |
Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080 |
[16] |
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361 |
[17] |
Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 |
[18] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[19] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[20] |
Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]