January  2014, 1(1): 163-176. doi: 10.3934/jcd.2014.1.163

Global optimal feedbacks for stochastic quantized nonlinear event systems

1. 

Technische Universität München, Boltzmannstr. 3, 85747 Garching, Germany, Germany, Germany

Received  January 2012 Revised  February 2014 Published  April 2014

We consider nonlinear control systems for which only quantized and event-triggered state information is available and which are subject to random delays and losses in the transmission of the state to the controller. We present an optimization based approach for computing globally stabilizing controllers for such systems. Our method is based on recently developed set oriented techniques for transforming the problem into a shortest path problem on a weighted hypergraph. We show how to extend this approach to a system subject to a stochastic parameter and propose a corresponding model for dealing with transmission delays.
Citation: Stefan Jerg, Oliver Junge, Marcus Post. Global optimal feedbacks for stochastic quantized nonlinear event systems. Journal of Computational Dynamics, 2014, 1 (1) : 163-176. doi: 10.3934/jcd.2014.1.163
References:
[1]

K. Aström, Event based control,, in Analysis and Design of Nonlinear Control Systems (eds. A. Astolfi and L. Marconi), (2008), 127. doi: 10.1007/978-3-540-74358-3_9.

[2]

K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design,, Third Edition, (2011).

[3]

S.-I. Azuma and T. Sugie, Dynamic quantization of nonlinear control systems,, Automatic Control, 57 (2012), 875. doi: 10.1109/TAC.2011.2167824.

[4]

D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 2.,, Belmont, (1995).

[5]

R. S. Bucy, Stability and positive supermartingales,, J. Differential Equations, 1 (1965), 151. doi: 10.1016/0022-0396(65)90016-1.

[6]

C. De Persis and F. Mazenc, Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach,, in Proc. of IEEE Conf. on Decision and Control, (2009), 4093.

[7]

W. Fleming, The convergence problem for differential games,, Journal of Mathematical Analysis and Applications, 3 (1961), 102. doi: 10.1016/0022-247X(61)90009-9.

[8]

D. Förstner, M. Jung and J. Lunze, A discrete-event model of asynchronous quantised systems,, Automatica, 38 (2002), 1277. doi: 10.1016/S0005-1098(02)00023-7.

[9]

E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach,, Automatica, 45 (2009), 2258. doi: 10.1016/j.automatica.2009.05.020.

[10]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proc. 46th IEEE CDC, (2007), 702.

[11]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, JOTA, 136 (2008), 411. doi: 10.1007/s10957-007-9312-z.

[12]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proc. 48th IEEE CDC, (2009), 5311.

[13]

J. P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent results in networked control systems,, Proc. IEEE, 95 (2007), 138. doi: 10.1109/JPROC.2006.887288.

[14]

O. Junge, Rigorous discretization of subdivision techniques,, in EQUADIFF 99, (2000), 916.

[15]

O. Junge and H. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259. doi: 10.1051/cocv:2004006.

[16]

E. Kofman and J. Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints,, in Proc. IEEE CDC, (2006), 4423. doi: 10.1109/CDC.2006.377483.

[17]

H. Kushner, On the stability of stochastic dynamical systems,, Proc. Nat. Acad. Sci. USA, 53 (1965), 8. doi: 10.1073/pnas.53.1.8.

[18]

H. Kushner, Stochastic Stability and Control,, Mathematics in Science and Engineering, (1967).

[19]

H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,, Applications of Mathematics, (1997).

[20]

D. Liberzon, Quantization, time delays, and nonlinear stabilization,, IEEE Transactions on Automatic Control, 51 (2006), 1190. doi: 10.1109/TAC.2006.878780.

[21]

D. Liberzon, Nonlinear control with limited information,, Commun. Inf. Syst., 9 (2009), 41. doi: 10.4310/CIS.2009.v9.n1.a2.

[22]

L. Litz, T. Gabriel, M. Groß and O. Gabel, Networked Control Systems (NCS) - Stand und Ausblick,, at - Automatisierungstechnik, 56 (2009), 4. doi: 10.1524/auto.2008.0682.

[23]

T. Liu, Z.-P. Jiang and D. J. Hill, Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,, Automatic Control, 57 (2012), 1326. doi: 10.1109/TAC.2012.2191870.

[24]

U. Lorenz and B. Monien, Error analysis in minimax trees,, TCS, 313 (2004), 485. doi: 10.1016/j.tcs.2002.10.004.

[25]

J. Lunze, Qualitative modelling of linear dynamical systems with quantized state measurements,, Automatica, 30 (1994), 417. doi: 10.1016/0005-1098(94)90119-8.

[26]

S. Mastellone, C. Abdallah and P. Dorato, Model-based networked control for nonlinear systems with stochastic packet dropout,, in Proc. American Control Conference., 4 (2005), 2365. doi: 10.1109/ACC.2005.1470320.

[27]

D. Nesic and D. Liberzon, A unified framework for design and analysis of networked and quantized control systems,, IEEE Transactions on Automatic Control, 54 (2009), 732. doi: 10.1109/TAC.2009.2014930.

[28]

G. Pola, P. Pepe, M. D. D. Benedetto and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations,, Systems and Control Letters, 59 (2010), 365. doi: 10.1016/j.sysconle.2010.04.001.

[29]

R. Sailer and F. Wirth, Stabilization of nonlinear systems with delayed data-rate-limited feedback,, in Proc. European Control Conference, (2009), 1734.

[30]

J. Schroeder, Modeling, State Observation and Diagnosis of Quantized Systems,, Springer, (2003).

[31]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Transactions on Automatic Control, 52 (2007), 1680. doi: 10.1109/TAC.2007.904277.

[32]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comp. Math., 2 (2002), 53.

[33]

M. von Lossow, A min-man version of Dijkstra's algorithm with application to perturbed optimal control problems.,, in In: Proceedings of the GAMM Annual Meeting, (2007).

[34]

X. Wang and M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays,, Hybrid Systems: Computation and control (HSCC), (5469), 366. doi: 10.1007/978-3-642-00602-9_26.

[35]

C. Zhang, K. Chen and G. Dullerud, Stabilization of markovian jump linear systems with limited information - a convex approach,, in Proc. ACC, (2009), 4013. doi: 10.1109/ACC.2009.5160685.

[36]

C. Zhang and G. Dullerud, Uniform stabilization of markovian jump linear systems with logarithmic quantization,, in Proc. IEEE CDC, (2009), 2094. doi: 10.1109/CDC.2009.5400361.

[37]

L. Zhang, H. Gao and O. Kaynak, Network-induced constraints in networked control systems-a survey,, IEEE Transactions on Industrial Informatics, 9 (2013), 403. doi: 10.1109/TII.2012.2219540.

show all references

References:
[1]

K. Aström, Event based control,, in Analysis and Design of Nonlinear Control Systems (eds. A. Astolfi and L. Marconi), (2008), 127. doi: 10.1007/978-3-540-74358-3_9.

[2]

K. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design,, Third Edition, (2011).

[3]

S.-I. Azuma and T. Sugie, Dynamic quantization of nonlinear control systems,, Automatic Control, 57 (2012), 875. doi: 10.1109/TAC.2011.2167824.

[4]

D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 2.,, Belmont, (1995).

[5]

R. S. Bucy, Stability and positive supermartingales,, J. Differential Equations, 1 (1965), 151. doi: 10.1016/0022-0396(65)90016-1.

[6]

C. De Persis and F. Mazenc, Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach,, in Proc. of IEEE Conf. on Decision and Control, (2009), 4093.

[7]

W. Fleming, The convergence problem for differential games,, Journal of Mathematical Analysis and Applications, 3 (1961), 102. doi: 10.1016/0022-247X(61)90009-9.

[8]

D. Förstner, M. Jung and J. Lunze, A discrete-event model of asynchronous quantised systems,, Automatica, 38 (2002), 1277. doi: 10.1016/S0005-1098(02)00023-7.

[9]

E. Fridman and M. Dambrine, Control under quantization, saturation and delay: An LMI approach,, Automatica, 45 (2009), 2258. doi: 10.1016/j.automatica.2009.05.020.

[10]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proc. 46th IEEE CDC, (2007), 702.

[11]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, JOTA, 136 (2008), 411. doi: 10.1007/s10957-007-9312-z.

[12]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proc. 48th IEEE CDC, (2009), 5311.

[13]

J. P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent results in networked control systems,, Proc. IEEE, 95 (2007), 138. doi: 10.1109/JPROC.2006.887288.

[14]

O. Junge, Rigorous discretization of subdivision techniques,, in EQUADIFF 99, (2000), 916.

[15]

O. Junge and H. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259. doi: 10.1051/cocv:2004006.

[16]

E. Kofman and J. Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints,, in Proc. IEEE CDC, (2006), 4423. doi: 10.1109/CDC.2006.377483.

[17]

H. Kushner, On the stability of stochastic dynamical systems,, Proc. Nat. Acad. Sci. USA, 53 (1965), 8. doi: 10.1073/pnas.53.1.8.

[18]

H. Kushner, Stochastic Stability and Control,, Mathematics in Science and Engineering, (1967).

[19]

H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,, Applications of Mathematics, (1997).

[20]

D. Liberzon, Quantization, time delays, and nonlinear stabilization,, IEEE Transactions on Automatic Control, 51 (2006), 1190. doi: 10.1109/TAC.2006.878780.

[21]

D. Liberzon, Nonlinear control with limited information,, Commun. Inf. Syst., 9 (2009), 41. doi: 10.4310/CIS.2009.v9.n1.a2.

[22]

L. Litz, T. Gabriel, M. Groß and O. Gabel, Networked Control Systems (NCS) - Stand und Ausblick,, at - Automatisierungstechnik, 56 (2009), 4. doi: 10.1524/auto.2008.0682.

[23]

T. Liu, Z.-P. Jiang and D. J. Hill, Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,, Automatic Control, 57 (2012), 1326. doi: 10.1109/TAC.2012.2191870.

[24]

U. Lorenz and B. Monien, Error analysis in minimax trees,, TCS, 313 (2004), 485. doi: 10.1016/j.tcs.2002.10.004.

[25]

J. Lunze, Qualitative modelling of linear dynamical systems with quantized state measurements,, Automatica, 30 (1994), 417. doi: 10.1016/0005-1098(94)90119-8.

[26]

S. Mastellone, C. Abdallah and P. Dorato, Model-based networked control for nonlinear systems with stochastic packet dropout,, in Proc. American Control Conference., 4 (2005), 2365. doi: 10.1109/ACC.2005.1470320.

[27]

D. Nesic and D. Liberzon, A unified framework for design and analysis of networked and quantized control systems,, IEEE Transactions on Automatic Control, 54 (2009), 732. doi: 10.1109/TAC.2009.2014930.

[28]

G. Pola, P. Pepe, M. D. D. Benedetto and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations,, Systems and Control Letters, 59 (2010), 365. doi: 10.1016/j.sysconle.2010.04.001.

[29]

R. Sailer and F. Wirth, Stabilization of nonlinear systems with delayed data-rate-limited feedback,, in Proc. European Control Conference, (2009), 1734.

[30]

J. Schroeder, Modeling, State Observation and Diagnosis of Quantized Systems,, Springer, (2003).

[31]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Transactions on Automatic Control, 52 (2007), 1680. doi: 10.1109/TAC.2007.904277.

[32]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comp. Math., 2 (2002), 53.

[33]

M. von Lossow, A min-man version of Dijkstra's algorithm with application to perturbed optimal control problems.,, in In: Proceedings of the GAMM Annual Meeting, (2007).

[34]

X. Wang and M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays,, Hybrid Systems: Computation and control (HSCC), (5469), 366. doi: 10.1007/978-3-642-00602-9_26.

[35]

C. Zhang, K. Chen and G. Dullerud, Stabilization of markovian jump linear systems with limited information - a convex approach,, in Proc. ACC, (2009), 4013. doi: 10.1109/ACC.2009.5160685.

[36]

C. Zhang and G. Dullerud, Uniform stabilization of markovian jump linear systems with logarithmic quantization,, in Proc. IEEE CDC, (2009), 2094. doi: 10.1109/CDC.2009.5400361.

[37]

L. Zhang, H. Gao and O. Kaynak, Network-induced constraints in networked control systems-a survey,, IEEE Transactions on Industrial Informatics, 9 (2013), 403. doi: 10.1109/TII.2012.2219540.

[1]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[2]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[3]

Sang-Heon Lee. Development of concurrent structural decentralised discrete event system using bisimulation concept. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 305-317. doi: 10.3934/naco.2016013

[4]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[5]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[6]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[7]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[8]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[9]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[10]

Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1341-1354. doi: 10.3934/dcdss.2019092

[11]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[12]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[13]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[14]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[15]

Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723

[16]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[17]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems I: framework and maximal permissive state feedback. Journal of Industrial & Management Optimization, 2008, 4 (1) : 107-123. doi: 10.3934/jimo.2008.4.107

[18]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[19]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[20]

Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure & Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]