January  2014, 1(1): 177-189. doi: 10.3934/jcd.2014.1.177

On the consistency of ensemble transform filter formulations

1. 

Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany

2. 

Korea Institute of Atmospheric Prediction Systems, 4F Korea Computer Bldg., 35 Boramae-ro 5-gil, Dongjak-gu, Seoul 156-849, South Korea

Received  October 2011 Revised  July 2012 Published  April 2014

In this paper, we consider the data assimilation problem for perfect differential equation models without model error and for either continuous or intermittent observational data. The focus will be on the popular class of ensemble Kalman filters which rely on a Gaussian approximation in the data assimilation step. We discuss the impact of this approximation on the temporal evolution of the ensemble mean and covariance matrix. We also discuss options for reducing arising inconsistencies, which are found to be more severe for the intermittent data assimilation problem. Inconsistencies can, however, not be completely eliminated due to the classic moment closure problem. It is also found for the Lorenz-63 model that the proposed corrections only improve the filter performance for relatively large ensemble sizes.
Citation: Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177
References:
[1]

J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters,, Q. J. Royal Meteorological Soc., (2013).  doi: 10.1002/qj.2186.  Google Scholar

[2]

J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,, Mon. Wea. Rev., 127 (1999), 2741.  doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.  Google Scholar

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability,, Springer-Verlag, (2009).   Google Scholar

[4]

K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms,, Q. J. R. Meteorological Soc., 135 (2009), 1560.  doi: 10.1002/qj.457.  Google Scholar

[5]

K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,, Q. J. R. Meteorological Soc., 136 (2010), 701.  doi: 10.1002/qj.591.  Google Scholar

[6]

K. Bergemann and S. Reich, A mollified ensemble Kalman filter,, Q. J. R. Meteorological Soc., 136 (2010), 1636.  doi: 10.1002/qj.672.  Google Scholar

[7]

K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation,, Meteorolog. Zeitschrift, 21 (2012), 213.  doi: 10.1127/0941-2948/2012/0307.  Google Scholar

[8]

D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs,, Stochastics, 82 (2010), 53.  doi: 10.1080/17442500902723575.  Google Scholar

[9]

D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains,, Stochastics, (2013).  doi: 10.1051/proc:071916.  Google Scholar

[10]

G. Evensen, Data Assimilation. The Ensemble Kalman Filter,, Springer-Verlag, (2006).  doi: 10.1007/978-3-642-03711-5.  Google Scholar

[11]

A. Jazwinski, Stochastic Processes and Filtering Theory,, Academic Press, (1970).   Google Scholar

[12]

J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation,, Mon. Weath. Rev., 139 (2011), 3964.  doi: 10.1175/2011MWR3553.1.  Google Scholar

[13]

E. Lorenz, Deterministic non-periodic flows,, J. Atmos. Sci., 20 (1963), 130.   Google Scholar

[14]

S. Reich, A dynamical systems framework for intermittent data assimilation,, BIT Numer Math, 51 (2011), 235.  doi: 10.1007/s10543-010-0302-4.  Google Scholar

[15]

S. Reich, A Gaussian mixture ensemble transform filter,, Q. J. R. Meterolog. Soc., 138 (2012), 222.  doi: 10.1002/qj.898.  Google Scholar

[16]

M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters,, Mon. Wea. Rev., 131 (2003), 1485.  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.  Google Scholar

[17]

C. Villani, Topics in Optimal Transportation,, American Mathematical Society, (2003).  doi: 10.1007/b12016.  Google Scholar

[18]

X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling,, Tellus, 58 (2006), 456.  doi: 10.1111/j.1600-0870.2006.00185.x.  Google Scholar

[19]

T. Yang, P. Mehta and S. Meyn, Feedback particle filter,, IEEE Trans. on Automatic Control, 58 (2013), 2465.  doi: 10.1109/TAC.2013.2258825.  Google Scholar

show all references

References:
[1]

J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters,, Q. J. Royal Meteorological Soc., (2013).  doi: 10.1002/qj.2186.  Google Scholar

[2]

J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,, Mon. Wea. Rev., 127 (1999), 2741.  doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.  Google Scholar

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability,, Springer-Verlag, (2009).   Google Scholar

[4]

K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms,, Q. J. R. Meteorological Soc., 135 (2009), 1560.  doi: 10.1002/qj.457.  Google Scholar

[5]

K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,, Q. J. R. Meteorological Soc., 136 (2010), 701.  doi: 10.1002/qj.591.  Google Scholar

[6]

K. Bergemann and S. Reich, A mollified ensemble Kalman filter,, Q. J. R. Meteorological Soc., 136 (2010), 1636.  doi: 10.1002/qj.672.  Google Scholar

[7]

K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation,, Meteorolog. Zeitschrift, 21 (2012), 213.  doi: 10.1127/0941-2948/2012/0307.  Google Scholar

[8]

D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs,, Stochastics, 82 (2010), 53.  doi: 10.1080/17442500902723575.  Google Scholar

[9]

D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains,, Stochastics, (2013).  doi: 10.1051/proc:071916.  Google Scholar

[10]

G. Evensen, Data Assimilation. The Ensemble Kalman Filter,, Springer-Verlag, (2006).  doi: 10.1007/978-3-642-03711-5.  Google Scholar

[11]

A. Jazwinski, Stochastic Processes and Filtering Theory,, Academic Press, (1970).   Google Scholar

[12]

J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation,, Mon. Weath. Rev., 139 (2011), 3964.  doi: 10.1175/2011MWR3553.1.  Google Scholar

[13]

E. Lorenz, Deterministic non-periodic flows,, J. Atmos. Sci., 20 (1963), 130.   Google Scholar

[14]

S. Reich, A dynamical systems framework for intermittent data assimilation,, BIT Numer Math, 51 (2011), 235.  doi: 10.1007/s10543-010-0302-4.  Google Scholar

[15]

S. Reich, A Gaussian mixture ensemble transform filter,, Q. J. R. Meterolog. Soc., 138 (2012), 222.  doi: 10.1002/qj.898.  Google Scholar

[16]

M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters,, Mon. Wea. Rev., 131 (2003), 1485.  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.  Google Scholar

[17]

C. Villani, Topics in Optimal Transportation,, American Mathematical Society, (2003).  doi: 10.1007/b12016.  Google Scholar

[18]

X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling,, Tellus, 58 (2006), 456.  doi: 10.1111/j.1600-0870.2006.00185.x.  Google Scholar

[19]

T. Yang, P. Mehta and S. Meyn, Feedback particle filter,, IEEE Trans. on Automatic Control, 58 (2013), 2465.  doi: 10.1109/TAC.2013.2258825.  Google Scholar

[1]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[2]

Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems & Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003

[3]

Russell Johnson, Carmen Núñez. The Kalman-Bucy filter revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4139-4153. doi: 10.3934/dcds.2014.34.4139

[4]

Xiaoying Han, Jinglai Li, Dongbin Xiu. Error analysis for numerical formulation of particle filter. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1337-1354. doi: 10.3934/dcdsb.2015.20.1337

[5]

Andrea Arnold, Daniela Calvetti, Erkki Somersalo. Vectorized and parallel particle filter SMC parameter estimation for stiff ODEs. Conference Publications, 2015, 2015 (special) : 75-84. doi: 10.3934/proc.2015.0075

[6]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial & Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038

[7]

Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences & Engineering, 2014, 11 (3) : 573-597. doi: 10.3934/mbe.2014.11.573

[8]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[9]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[10]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[11]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[12]

Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483

[13]

Valerii Maltsev, Michael Pokojovy. On a parabolic-hyperbolic filter for multicolor image noise reduction. Evolution Equations & Control Theory, 2016, 5 (2) : 251-272. doi: 10.3934/eect.2016004

[14]

Kody Law, Abhishek Shukla, Andrew Stuart. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1061-1078. doi: 10.3934/dcds.2014.34.1061

[15]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[16]

Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99

[17]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks & Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[18]

Yuan Pei. Continuous data assimilation for the 3D primitive equations of the ocean. Communications on Pure & Applied Analysis, 2019, 18 (2) : 643-661. doi: 10.3934/cpaa.2019032

[19]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[20]

Joshua Hudson, Michael Jolly. Numerical efficacy study of data assimilation for the 2D magnetohydrodynamic equations. Journal of Computational Dynamics, 2019, 6 (1) : 131-145. doi: 10.3934/jcd.2019006

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]