June  2014, 1(2): 213-232. doi: 10.3934/jcd.2014.1.213

Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model

1. 

Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway

2. 

MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, Szeged, Aradi vertanuk tere 1, H-6720, Hungary

Received  April 2013 Revised  July 2013 Published  December 2014

We consider the global asymptotic stability of the trivial fixed point of the difference equation $x_{n+1}=m x_n-\alpha \varphi(x_{n-1})$, where $(\alpha,m) \in \mathbb{R}^2$ and $\varphi$ is a real function satisfying the discrete Yorke condition: $\min\{0,x\} \leq \varphi(x) \leq \max\{0,x\}$ for all $x\in \mathbb{R}$. If $\varphi$ is bounded then $(\alpha,m) \in [|m|-1,1] \times [-1,1]$, $(\alpha,m) \neq (0,-1), (0,1)$ is necessary for the global stability of $0$. We prove that if $\varphi(x) \equiv \tanh(x)$, then this condition is sufficient as well.
Citation: Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213
References:
[1]

G. Alefeld and J. Herzberger, Introduction to Interval Computations,, Academic Press, (1983).   Google Scholar

[2]

F. A. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional Ricker map,, J. Difference Equ. Appl., 19 (2013), 2043.  doi: 10.1080/10236198.2013.804916.  Google Scholar

[3]

Y. Cao, Uniqueness of periodic solution for differential delay equations,, J. Differential Equations, 128 (1996), 46.  doi: 10.1006/jdeq.1996.0088.  Google Scholar

[4]

W.-H. Chen, X. Lu and D.-Y. Liang, Global exponential stability for discrete-time neural networks with variable delays,, Physics Letters A, 358 (2006), 186.  doi: 10.1016/j.physleta.2006.05.014.  Google Scholar

[5]

C. W. Clark, A delayed-recruitment model of population dynamics, with an application to baleen whale populations,, J. Math. Biol., 3 (1976), 381.  doi: 10.1007/BF00275067.  Google Scholar

[6]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numer. Math., 75 (1997), 293.  doi: 10.1007/s002110050240.  Google Scholar

[7]

M. Dellnitz, A. Hohmann, O. Junge and M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221.  doi: 10.1063/1.166223.  Google Scholar

[8]

H. A. El-Morshedy and E. Liz, Convergence to equilibria in discrete population models,, J. Difference Equ. Appl., 11 (2005), 117.  doi: 10.1080/10236190512331319334.  Google Scholar

[9]

Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic,, Nonlinearity, 15 (2002), 1759.  doi: 10.1088/0951-7715/15/6/304.  Google Scholar

[10]

S. Guo, L. Huang and L. Wang, Exponential stability of discrete-time Hopfield neural networks,, Comput. Math. Appl., 47 (2004), 1249.  doi: 10.1016/S0898-1221(04)90119-8.  Google Scholar

[11]

S. Haykin, Neural Networks: A Comprehensive Foundation,, Prentice-Hall, (1999).   Google Scholar

[12]

V. J. López, A counterexample on global attractivity for Clark's equation,, Proceedings of the Workshop Future Directions in Difference Equations, 69 (2011), 97.   Google Scholar

[13]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993).  doi: 10.1007/978-94-017-1703-8.  Google Scholar

[14]

T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,, Electron. J. Qual. Theory Differ. Equ., (1999), 1.   Google Scholar

[15]

T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,, in Topics in Functional Differential and Difference Equations, 29 (2001), 267.   Google Scholar

[16]

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,, J. Dynam. Differential Equations, 13 (2001), 1.  doi: 10.1023/A:1009091930589.  Google Scholar

[17]

T. Krisztin, H.-O. Walther and J. Wu, Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,, Fields Institute Monographs, (1999).   Google Scholar

[18]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edition,, Applied Mathematical Sciences, (2004).  doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

E. Liz, Stability of non-autonomous difference equations: Simple ideas leading to useful results,, J. Difference Equ. Appl., 17 (2011), 203.  doi: 10.1080/10236198.2010.549007.  Google Scholar

[20]

S. Luzzatto and P. Pilarczyk, Finite resolution dynamics,, Found. Comput. Math., 11 (2011), 211.  doi: 10.1007/s10208-010-9083-z.  Google Scholar

[21]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17.  doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[22]

R. E. Moore, Methods and Applications of Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (1979).  doi: 10.1137/1.9781611970906.  Google Scholar

[23]

R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (2009).  doi: 10.1137/1.9780898717716.  Google Scholar

[24]

N. S. Nedialkov, K. R. Jackson and G. F. Corliss, Validated solutions of initial value problems for ordinary differential equations,, Appl. Math. Comput., 105 (1999), 21.  doi: 10.1016/S0096-3003(98)10083-8.  Google Scholar

[25]

O. I. Nenya, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 9 (2006), 513.  doi: 10.1007/s11072-006-0058-6.  Google Scholar

[26]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On sharp conditions for the global stability of a difference equation satisfying the Yorke condition,, Ukrainian Math. J., 60 (2008), 78.  doi: 10.1007/s11253-008-0043-6.  Google Scholar

[27]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 7 (2004), 473.  doi: 10.1007/s11072-005-0027-5.  Google Scholar

[28]

J. G. Siek, L.-Q. Lee and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual,, Addison-Wesley, (2002).   Google Scholar

[29]

R. Tarjan, Depth-first search and linear graph algorithms,, SIAM J. Comput., 1 (1972), 146.  doi: 10.1137/0201010.  Google Scholar

[30]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53.  doi: 10.1007/s002080010018.  Google Scholar

[31]

W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations,, Princeton University Press, (2011).   Google Scholar

[32]

D. Wilczak, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the Kuznetsov system,, SIAM J. Appl. Dyn. Syst., 9 (2010), 1263.  doi: 10.1137/100795176.  Google Scholar

[33]

J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay,, de Gruyter Series in Nonlinear Analysis and Applications, (2001).  doi: 10.1515/9783110879971.  Google Scholar

[34]

H. Xu, Y. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays,, Appl. Math. Comput., 217 (2010), 537.  doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[35]

Q. Zhang, X. Wei and J. Xu, On global exponential stability of discrete-time Hopfield neural networks with variable delays,, Discrete Dyn. Nat. Soc., 2007 (2007).  doi: 10.1155/2007/67675.  Google Scholar

[36]

, =, ().   Google Scholar

[37]

Computer-Aided Proofs in Analysis group, CAPA,, , ().   Google Scholar

[38]

Computer Assisted Proofs in Dynamics group, CAPD Library,, , ().   Google Scholar

[39]

National Information Infrastructure Development Institute, NIIF,, , ().   Google Scholar

show all references

References:
[1]

G. Alefeld and J. Herzberger, Introduction to Interval Computations,, Academic Press, (1983).   Google Scholar

[2]

F. A. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional Ricker map,, J. Difference Equ. Appl., 19 (2013), 2043.  doi: 10.1080/10236198.2013.804916.  Google Scholar

[3]

Y. Cao, Uniqueness of periodic solution for differential delay equations,, J. Differential Equations, 128 (1996), 46.  doi: 10.1006/jdeq.1996.0088.  Google Scholar

[4]

W.-H. Chen, X. Lu and D.-Y. Liang, Global exponential stability for discrete-time neural networks with variable delays,, Physics Letters A, 358 (2006), 186.  doi: 10.1016/j.physleta.2006.05.014.  Google Scholar

[5]

C. W. Clark, A delayed-recruitment model of population dynamics, with an application to baleen whale populations,, J. Math. Biol., 3 (1976), 381.  doi: 10.1007/BF00275067.  Google Scholar

[6]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numer. Math., 75 (1997), 293.  doi: 10.1007/s002110050240.  Google Scholar

[7]

M. Dellnitz, A. Hohmann, O. Junge and M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221.  doi: 10.1063/1.166223.  Google Scholar

[8]

H. A. El-Morshedy and E. Liz, Convergence to equilibria in discrete population models,, J. Difference Equ. Appl., 11 (2005), 117.  doi: 10.1080/10236190512331319334.  Google Scholar

[9]

Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic,, Nonlinearity, 15 (2002), 1759.  doi: 10.1088/0951-7715/15/6/304.  Google Scholar

[10]

S. Guo, L. Huang and L. Wang, Exponential stability of discrete-time Hopfield neural networks,, Comput. Math. Appl., 47 (2004), 1249.  doi: 10.1016/S0898-1221(04)90119-8.  Google Scholar

[11]

S. Haykin, Neural Networks: A Comprehensive Foundation,, Prentice-Hall, (1999).   Google Scholar

[12]

V. J. López, A counterexample on global attractivity for Clark's equation,, Proceedings of the Workshop Future Directions in Difference Equations, 69 (2011), 97.   Google Scholar

[13]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993).  doi: 10.1007/978-94-017-1703-8.  Google Scholar

[14]

T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,, Electron. J. Qual. Theory Differ. Equ., (1999), 1.   Google Scholar

[15]

T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,, in Topics in Functional Differential and Difference Equations, 29 (2001), 267.   Google Scholar

[16]

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,, J. Dynam. Differential Equations, 13 (2001), 1.  doi: 10.1023/A:1009091930589.  Google Scholar

[17]

T. Krisztin, H.-O. Walther and J. Wu, Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,, Fields Institute Monographs, (1999).   Google Scholar

[18]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edition,, Applied Mathematical Sciences, (2004).  doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

E. Liz, Stability of non-autonomous difference equations: Simple ideas leading to useful results,, J. Difference Equ. Appl., 17 (2011), 203.  doi: 10.1080/10236198.2010.549007.  Google Scholar

[20]

S. Luzzatto and P. Pilarczyk, Finite resolution dynamics,, Found. Comput. Math., 11 (2011), 211.  doi: 10.1007/s10208-010-9083-z.  Google Scholar

[21]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17.  doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[22]

R. E. Moore, Methods and Applications of Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (1979).  doi: 10.1137/1.9781611970906.  Google Scholar

[23]

R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (2009).  doi: 10.1137/1.9780898717716.  Google Scholar

[24]

N. S. Nedialkov, K. R. Jackson and G. F. Corliss, Validated solutions of initial value problems for ordinary differential equations,, Appl. Math. Comput., 105 (1999), 21.  doi: 10.1016/S0096-3003(98)10083-8.  Google Scholar

[25]

O. I. Nenya, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 9 (2006), 513.  doi: 10.1007/s11072-006-0058-6.  Google Scholar

[26]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On sharp conditions for the global stability of a difference equation satisfying the Yorke condition,, Ukrainian Math. J., 60 (2008), 78.  doi: 10.1007/s11253-008-0043-6.  Google Scholar

[27]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 7 (2004), 473.  doi: 10.1007/s11072-005-0027-5.  Google Scholar

[28]

J. G. Siek, L.-Q. Lee and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual,, Addison-Wesley, (2002).   Google Scholar

[29]

R. Tarjan, Depth-first search and linear graph algorithms,, SIAM J. Comput., 1 (1972), 146.  doi: 10.1137/0201010.  Google Scholar

[30]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53.  doi: 10.1007/s002080010018.  Google Scholar

[31]

W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations,, Princeton University Press, (2011).   Google Scholar

[32]

D. Wilczak, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the Kuznetsov system,, SIAM J. Appl. Dyn. Syst., 9 (2010), 1263.  doi: 10.1137/100795176.  Google Scholar

[33]

J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay,, de Gruyter Series in Nonlinear Analysis and Applications, (2001).  doi: 10.1515/9783110879971.  Google Scholar

[34]

H. Xu, Y. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays,, Appl. Math. Comput., 217 (2010), 537.  doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[35]

Q. Zhang, X. Wei and J. Xu, On global exponential stability of discrete-time Hopfield neural networks with variable delays,, Discrete Dyn. Nat. Soc., 2007 (2007).  doi: 10.1155/2007/67675.  Google Scholar

[36]

, =, ().   Google Scholar

[37]

Computer-Aided Proofs in Analysis group, CAPA,, , ().   Google Scholar

[38]

Computer Assisted Proofs in Dynamics group, CAPD Library,, , ().   Google Scholar

[39]

National Information Infrastructure Development Institute, NIIF,, , ().   Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[3]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[6]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

 Impact Factor: 

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]