June  2014, 1(2): 213-232. doi: 10.3934/jcd.2014.1.213

Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model

1. 

Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway

2. 

MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, Szeged, Aradi vertanuk tere 1, H-6720, Hungary

Received  April 2013 Revised  July 2013 Published  December 2014

We consider the global asymptotic stability of the trivial fixed point of the difference equation $x_{n+1}=m x_n-\alpha \varphi(x_{n-1})$, where $(\alpha,m) \in \mathbb{R}^2$ and $\varphi$ is a real function satisfying the discrete Yorke condition: $\min\{0,x\} \leq \varphi(x) \leq \max\{0,x\}$ for all $x\in \mathbb{R}$. If $\varphi$ is bounded then $(\alpha,m) \in [|m|-1,1] \times [-1,1]$, $(\alpha,m) \neq (0,-1), (0,1)$ is necessary for the global stability of $0$. We prove that if $\varphi(x) \equiv \tanh(x)$, then this condition is sufficient as well.
Citation: Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213
References:
[1]

Academic Press, New York, NY, 1983.  Google Scholar

[2]

J. Difference Equ. Appl., 19 (2013), 2043-2078. doi: 10.1080/10236198.2013.804916.  Google Scholar

[3]

J. Differential Equations, 128 (1996), 46-57. doi: 10.1006/jdeq.1996.0088.  Google Scholar

[4]

Physics Letters A, 358 (2006), 186-198. doi: 10.1016/j.physleta.2006.05.014.  Google Scholar

[5]

J. Math. Biol., 3 (1976), 381-391. doi: 10.1007/BF00275067.  Google Scholar

[6]

Numer. Math., 75 (1997), 293-317. doi: 10.1007/s002110050240.  Google Scholar

[7]

Chaos, 7 (1997), 221-228. doi: 10.1063/1.166223.  Google Scholar

[8]

J. Difference Equ. Appl., 11 (2005), 117-131. doi: 10.1080/10236190512331319334.  Google Scholar

[9]

Nonlinearity, 15 (2002), 1759-1779. doi: 10.1088/0951-7715/15/6/304.  Google Scholar

[10]

Comput. Math. Appl., 47 (2004), 1249-1256. doi: 10.1016/S0898-1221(04)90119-8.  Google Scholar

[11]

Prentice-Hall, Upper Saddle River, NJ, 1999. Google Scholar

[12]

Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr., Univ. Vigo, Serv. Publ., 69 (2011), 97-105. http://www.dma.uvigo.es/ eliz/pdf/Jimenez.pdf  Google Scholar

[13]

Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1703-8.  Google Scholar

[14]

Electron. J. Qual. Theory Differ. Equ., Proc. 6'th Coll. Qualitative Theory of Diff. Equ., (1999), 1-12. http://www.math.u-szeged.hu/ejqtde/p76.pdf  Google Scholar

[15]

in Topics in Functional Differential and Difference Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 29 (2001), 267-296. http://www.ams.org/bookstore?fn=20&arg1=ficseries&ikey=FIC-29  Google Scholar

[16]

J. Dynam. Differential Equations, 13 (2001), 1-57. doi: 10.1023/A:1009091930589.  Google Scholar

[17]

Fields Institute Monographs, vol. 11, American Mathematical Society, Providence, RI, 1999. http://www.ams.org/bookstore?fn=20&arg1=fimseries&ikey=FIM-11  Google Scholar

[18]

Applied Mathematical Sciences, vol. 112, Springer-Verlag, New York, NY, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

J. Difference Equ. Appl., 17 (2011), 203-220. doi: 10.1080/10236198.2010.549007.  Google Scholar

[20]

Found. Comput. Math., 11 (2011), 211-239. doi: 10.1007/s10208-010-9083-z.  Google Scholar

[21]

Appl. Math. Comput., 135 (2003), 17-38. doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[22]

SIAM Soc. for Industrial and Applied Math., Philadelphia, PA, 1979. doi: 10.1137/1.9781611970906.  Google Scholar

[23]

SIAM Soc. for Industrial and Applied Math., Philadelphia, PA, 2009. doi: 10.1137/1.9780898717716.  Google Scholar

[24]

Appl. Math. Comput., 105 (1999), 21-68. doi: 10.1016/S0096-3003(98)10083-8.  Google Scholar

[25]

Nonlinear Oscil., 9 (2006), 513-522. doi: 10.1007/s11072-006-0058-6.  Google Scholar

[26]

Ukrainian Math. J., 60 (2008), 78-90. doi: 10.1007/s11253-008-0043-6.  Google Scholar

[27]

Nonlinear Oscil., 7 (2004), 473-480. doi: 10.1007/s11072-005-0027-5.  Google Scholar

[28]

Addison-Wesley, Boston, MA, 2002. Google Scholar

[29]

SIAM J. Comput., 1 (1972), 146-160. doi: 10.1137/0201010.  Google Scholar

[30]

Found. Comput. Math., 2 (2002), 53-117. http://www2.math.uu.se/ warwick/main/rodes/JFoCM.pdf doi: 10.1007/s002080010018.  Google Scholar

[31]

Princeton University Press, Princeton, NJ, 2011. http://press.princeton.edu/titles/9488.html  Google Scholar

[32]

SIAM J. Appl. Dyn. Syst., 9 (2010), 1263-1283. doi: 10.1137/100795176.  Google Scholar

[33]

de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 2001. http://www.degruyter.com/view/product/61263 doi: 10.1515/9783110879971.  Google Scholar

[34]

Appl. Math. Comput., 217 (2010), 537-544. doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[35]

Discrete Dyn. Nat. Soc., 2007 (2007), Art. ID 67675, 9pp. doi: 10.1155/2007/67675.  Google Scholar

[36]

, =, ().   Google Scholar

[37]

Computer-Aided Proofs in Analysis group, CAPA,, , ().   Google Scholar

[38]

Computer Assisted Proofs in Dynamics group, CAPD Library,, , ().   Google Scholar

[39]

National Information Infrastructure Development Institute, NIIF,, , ().   Google Scholar

show all references

References:
[1]

Academic Press, New York, NY, 1983.  Google Scholar

[2]

J. Difference Equ. Appl., 19 (2013), 2043-2078. doi: 10.1080/10236198.2013.804916.  Google Scholar

[3]

J. Differential Equations, 128 (1996), 46-57. doi: 10.1006/jdeq.1996.0088.  Google Scholar

[4]

Physics Letters A, 358 (2006), 186-198. doi: 10.1016/j.physleta.2006.05.014.  Google Scholar

[5]

J. Math. Biol., 3 (1976), 381-391. doi: 10.1007/BF00275067.  Google Scholar

[6]

Numer. Math., 75 (1997), 293-317. doi: 10.1007/s002110050240.  Google Scholar

[7]

Chaos, 7 (1997), 221-228. doi: 10.1063/1.166223.  Google Scholar

[8]

J. Difference Equ. Appl., 11 (2005), 117-131. doi: 10.1080/10236190512331319334.  Google Scholar

[9]

Nonlinearity, 15 (2002), 1759-1779. doi: 10.1088/0951-7715/15/6/304.  Google Scholar

[10]

Comput. Math. Appl., 47 (2004), 1249-1256. doi: 10.1016/S0898-1221(04)90119-8.  Google Scholar

[11]

Prentice-Hall, Upper Saddle River, NJ, 1999. Google Scholar

[12]

Proceedings of the Workshop Future Directions in Difference Equations, Colecc. Congr., Univ. Vigo, Serv. Publ., 69 (2011), 97-105. http://www.dma.uvigo.es/ eliz/pdf/Jimenez.pdf  Google Scholar

[13]

Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1703-8.  Google Scholar

[14]

Electron. J. Qual. Theory Differ. Equ., Proc. 6'th Coll. Qualitative Theory of Diff. Equ., (1999), 1-12. http://www.math.u-szeged.hu/ejqtde/p76.pdf  Google Scholar

[15]

in Topics in Functional Differential and Difference Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 29 (2001), 267-296. http://www.ams.org/bookstore?fn=20&arg1=ficseries&ikey=FIC-29  Google Scholar

[16]

J. Dynam. Differential Equations, 13 (2001), 1-57. doi: 10.1023/A:1009091930589.  Google Scholar

[17]

Fields Institute Monographs, vol. 11, American Mathematical Society, Providence, RI, 1999. http://www.ams.org/bookstore?fn=20&arg1=fimseries&ikey=FIM-11  Google Scholar

[18]

Applied Mathematical Sciences, vol. 112, Springer-Verlag, New York, NY, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

J. Difference Equ. Appl., 17 (2011), 203-220. doi: 10.1080/10236198.2010.549007.  Google Scholar

[20]

Found. Comput. Math., 11 (2011), 211-239. doi: 10.1007/s10208-010-9083-z.  Google Scholar

[21]

Appl. Math. Comput., 135 (2003), 17-38. doi: 10.1016/S0096-3003(01)00299-5.  Google Scholar

[22]

SIAM Soc. for Industrial and Applied Math., Philadelphia, PA, 1979. doi: 10.1137/1.9781611970906.  Google Scholar

[23]

SIAM Soc. for Industrial and Applied Math., Philadelphia, PA, 2009. doi: 10.1137/1.9780898717716.  Google Scholar

[24]

Appl. Math. Comput., 105 (1999), 21-68. doi: 10.1016/S0096-3003(98)10083-8.  Google Scholar

[25]

Nonlinear Oscil., 9 (2006), 513-522. doi: 10.1007/s11072-006-0058-6.  Google Scholar

[26]

Ukrainian Math. J., 60 (2008), 78-90. doi: 10.1007/s11253-008-0043-6.  Google Scholar

[27]

Nonlinear Oscil., 7 (2004), 473-480. doi: 10.1007/s11072-005-0027-5.  Google Scholar

[28]

Addison-Wesley, Boston, MA, 2002. Google Scholar

[29]

SIAM J. Comput., 1 (1972), 146-160. doi: 10.1137/0201010.  Google Scholar

[30]

Found. Comput. Math., 2 (2002), 53-117. http://www2.math.uu.se/ warwick/main/rodes/JFoCM.pdf doi: 10.1007/s002080010018.  Google Scholar

[31]

Princeton University Press, Princeton, NJ, 2011. http://press.princeton.edu/titles/9488.html  Google Scholar

[32]

SIAM J. Appl. Dyn. Syst., 9 (2010), 1263-1283. doi: 10.1137/100795176.  Google Scholar

[33]

de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 2001. http://www.degruyter.com/view/product/61263 doi: 10.1515/9783110879971.  Google Scholar

[34]

Appl. Math. Comput., 217 (2010), 537-544. doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[35]

Discrete Dyn. Nat. Soc., 2007 (2007), Art. ID 67675, 9pp. doi: 10.1155/2007/67675.  Google Scholar

[36]

, =, ().   Google Scholar

[37]

Computer-Aided Proofs in Analysis group, CAPA,, , ().   Google Scholar

[38]

Computer Assisted Proofs in Dynamics group, CAPD Library,, , ().   Google Scholar

[39]

National Information Infrastructure Development Institute, NIIF,, , ().   Google Scholar

[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[3]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[5]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[6]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3579. doi: 10.3934/dcdsb.2020246

[7]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[8]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[9]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[10]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[11]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[12]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[13]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[14]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[15]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[16]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021065

[17]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[18]

Assia Boubidi, Sihem Kechida, Hicham Tebbikh. Analytical study of resonance regions for second kind commensurate fractional systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3579-3594. doi: 10.3934/dcdsb.2020247

[19]

Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3737-3765. doi: 10.3934/dcdsb.2020255

[20]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

 Impact Factor: 

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]